RabMAbs® = BETTER STEM CELL ANTIBodies

• Antibodies to pluripotent transcription factors: LIN28, Nanog, OCT4, SOX2 and more
• Validated in WB, IHC, IF, IP and FACS
• Over 6800 antibodies and counting

Why RabMAbs make better stem cell antibodies:

The rabbit immune system responds better to difficult antigens than the mouse immune system. This is critical for the development of high quality antibodies. Epitomics Rabbit Monoclonal Antibodies (RabMAbs) provide the combined benefits of superior antigen recognition of the rabbit immune system with the specificity and consistency of a monoclonal antibody, bringing you the highest quality antibody possible. Epitomics has developed various high quality stem cell marker antibodies, including a panel of RabMAbs to core pluripotent cell markers (e.g. LIN28, Nanog, OCT4, SOX2).

Find out more @ www.epitomics.com/stemcell

SPECIAL OFFER
$99 ANTIBODY SPECIAL
Find out more @ www.epitomics.com/products/promo

www.epitomics.com
Detection of Apoptosis on the BD FACSVerse™ System
A streamlined approach to application support.

What’s Really Exciting Is What’s Behind it.

The BD Annexin V FITC assay shown illustrates the detection of camptothecin-induced apoptosis in Jurkat cells using the BD Pharmingen™ Annexin V FITC Apoptosis Detection Kit.

Representative Annexin V FITC-A vs. Propidium Iodide-A contour plots using untreated and camptothecin-treated cells show an increase in the Annexin V+ PI– population and a decrease in the Annexin V– PI– population.

New BD FACSuite™ software makes it easy to convert experiments to reusable assays with setup information, acquisition and analysis templates, gating strategies, and reports you can share with other BD FACSVerse™ systems. The software also provides BD predefined research assays matched with BD reagent kits for reproducible results. These assays reduce the variability of data between users and among laboratories for the same application.

Download a free application note and learn more about BD FACSuite predefined assays for apoptosis, cell cycle, cell proliferation, and cytokine detection at bdbiosciences.com/go/verse.

Simply Brilliant.
Is it science or art?

Check out our gallery...

Scientists from around the world have been submitting inspirational images from their cellular research into GE Healthcare's 2011 IN Cell Analyzer Image Competition.

Now it's your chance to vote for your favorite image and receive a limited edition, 2012 Image Competition calendar* featuring twelve of the most popular images as voted by you.

The winning images will be displayed on NBC Universal's high-definition screen in Times Square, New York, so you decide – which image best captures the art in science?

Cast your vote today at www.gelifesciences.com/incellcompetition
Evrogen T-Cell Receptor (TCR) profiling service delivers deep quantitative analysis of an individual human TCR repertoire. Beginning with total or poly(A)+ mRNA, our unbiased amplification procedure allows generation of TCR beta CDR3 sequences containing preserved quantitative ratios of the original clonotypes. Isolated cDNA samples are readily adapted for next-generation sequencing (NGS) on Roche 454 and Illumina Solexa platforms. Additional powerful bioinformatics analysis of the NGS data provides reliable results on TCR diversity in a clear and comprehensive way.

Virtual CDR3 region spectratyping and clonotyping. The analyzed datasets were produced using 454 sequencing for three sequential blood samples, obtained before, four months after, and about a year after the immunosuppressive therapy of an autoimmune patient. The spectratype plot for the TRBV7-2 gene is shown. The most abundant clonotypes are shown by different colors and their CDR3 amino acid sequences are presented on the right. The number of TCR V beta sequences of corresponding CDR3 region nucleotide length (x-axis) is plotted along the y-axis.
Have you seen it?

To learn more, visit www.millipore.com/muse

Be the first to see it!
Scan this 2D bar code with your mobile device.
Built for performance.

DNA Ligases from New England Biolabs.

Why compromise any aspect of performance in your cloning experiments? DNA ligases from NEB set the industry standard for function and purity. Continuous product development and extensive quality controls ensure success in your ligation reactions.

DNA ligases from NEB – building a strong foundation for your cloning experiments.

SPECIAL OFFER
Purchase NEB 5-alpha Competent Cells with NEB’s Quick Ligation Kit and receive the item of lesser value for FREE

For more information, visit www.neb.com/DNAligases
Perform an Apples-to-Apples Comparison to any 384-Well PCR System

Does Life Technologies’ launch of the new ViiA 7 Real-Time PCR System have you seeking a replacement for your 384-well system? Before rushing into any purchase, check out the time-tested, peer-published LightCycler® 480 Real-Time PCR System from Roche Applied Science — the 384-well solution of choice for hundreds of researchers during the past five years.

- **Generate consistent, reliable data—without Rox dye.** Why rely on Rox dye to normalize data between wells? Achieve reproducible results well-to-well and between runs through the LightCycler® 480 System’s greater temperature homogeneity (Figure 1).

- **Readily integrate the LightCycler® 480 System into your lab’s robotics.** Why limit your automation choices to only the one robot supplied by your qPCR instrument manufacturer?

- **Rely on >900 publications and your colleagues’ experience with our service.** Ask any LightCycler® 480 System owner about the ongoing customer support you can expect.

Compare the LightCycler® 480 System to any 384-well system — old or new. Call 800 262 4911 or visit www.roche-applied-science.com/usa/compare to learn more.
Genomics Solutions

- **de novo**
- Whole Genome Resequencing
- Exome
- Target Region
- RNA-Seq
- Metagenomics
- Epigenomics
- Microbes

Bioinformatics Solutions
- Assembly
- Mapping
- Annotation
- Evolution & Comparative Genomics
- Cloud Computing

1000 Professionals

Sequencing Platforms
- Next Generation Sequencers
 - 137 Illumina HiSeq 2000
 - 27 ABI SOLiD4 System
- Supercomputing Centers
 - 102T FLOPS, 20TB Memory, 10PB Storage

Accurate. Reliable. Efficient.

Sequencing

Accelerate Your Scientific Exploration

email: tech@genomics.cn website: www.genomics.cn

Locations: China (Mainland, Hong Kong), North America (Boston), Europe (Copenhagen)
Robust, sensitive, and fast real-time results under any conditions.

That’s enzymagic.

Introducing SsoAdvanced™ SYBR® Green supermix — designed to deliver superior gene expression results faster, without compromising on sensitivity or reliability. With increased resistance to a broad range of PCR inhibitors, this supermix provides high sensitivity of detection, even from your most challenging samples.

- **Better performance** — a robust formulation provides quality data consistently with either standard or fast cycling
- **More tolerance** — predeveloped qPCR assays work in a range of reaction conditions, primer concentrations, and temperature ranges
- **Reliable efficiency** — instant polymerase activation and rapid polymerization kinetics decrease run times and time to results, without compromise

Speed isn’t everything, but combine it with this kind of reliability, sensitivity, and performance, and that’s really something. Learn more at www.bio-rad.com/ad/Ssoadvanced or contact your Bio-Rad representative.

Research. Together.

SYBR is a trademark of Molecular Probes, Inc. Bio-Rad Laboratories, Inc. is licensed by Molecular Probes, Inc. to sell reagents containing SYBR Green I for use in real-time PCR, for research purposes only.
Eco™ Real-Time PCR System.

Risk-free 7-day trial.*

Full-featured versatility. Superior performance for one-half the price of other systems. The Eco offers:

• High Resolution Melt (HRM) included
• Open chemistry, including FAST
• Uniformity +/- 0.1° C
• 4-color multiplex
• High precision: <0.08 Cq standard deviation
• Single copy detection
• Broad dynamic range
• Small footprint

To evaluate the Eco in your lab, fill out a brief online form.

www.ecoqpcr.com/trial

* Risk-free trial only available in the United States.
Visit www.ecoqpcr.com/contact to find a distributor near you.
GENOMICS
Gene-Expression Analysis

In This Issue
To quantify the expression of specific genes, researchers can use a variety of techniques, including arrays, PCR, and high throughput sequencing. However, getting accurate results still depends on precisely carrying out these methods, even with increasingly user-friendly technologies. In fact, as more scientists study gene expression, the standards for analysis are growing more rigorous to ensure that only accurate data are published. Likewise, software has been keeping pace, helping researchers follow protocols and analyze their results.

See full story on page 702.

Upcoming Features
Outsourcing Lab Services—November 25
Genomics: Building Clinically Relevant Models—February 24
Toxicology: Animal-free Techniques—March 2
And the 2011 winner is...

Tiago Branco, M.D., Ph.D.
Postdoctoral Research Fellow
University College London

Congratulations to Tiago Branco on winning the 2011 Eppendorf & Science Prize for his studies on how dendrites discriminate temporal input sequences and apply different integration rules depending on input location. The results of his research provide insight on how the brain performs computations, and suggest that even single neurons can solve complex computational tasks.

The annual US$ 25,000 Eppendorf & Science Prize for Neurobiology honors scientists, like Dr. Branco, for their outstanding contributions to neurobiology research. Dr. Branco is the tenth recipient of this international award. He will be honored at a ceremony held during the week of the 2011 Annual Meeting of the Society for Neuroscience in Washington, DC.

You Could Be Next.
If you are 35 years of age or younger and currently performing neurobiology research, you could be next to win the 2012 Prize. Deadline for entries is June 15, 2012.
Develop a new understanding of THE ROLE OF MITOCHONDRIAL DYSFUNCTION IN neurodegenerative diseases

The Seahorse XF Extracellular Flux Analyzer

The XF Analyzer identifies mitochondrial dysfunction and subtle changes in neuronal cell metabolism early in pathogenesis, before the development of observable neurodegeneration. Learn how XF Analyzer results have helped advance several neurological drugs to Phase 2 clinical trials, and see for yourself why over 1,500 scientists have chosen the XF Analyzer for their bioenergetic research needs.

See what’s possible.
Scan this QR code to view videos and see what the XF Analyzer can achieve. Visit www.seahorsebio.com/neuro_science for more information and Special Offers!
Thank you for trusting us with your research

We’re committed to your success. That’s why we’ve united the most cited, most trusted life science brands. With 1,500 scientists dedicated to anticipating your evolving needs, we offer a range of innovative, high-quality solutions to fit every lab’s budget. That’s the value of life.
get there faster

Invitrogen™ cloning essentials get you to results in minutes

Built on a legacy of innovation and trusted performance, Invitrogen™ everyday cloning products are designed to save you hours, even days, of precious research time. Find them all—including TOPO® PCR cloning kits, GeneArt® DNA assembly kits, and the One Shot® family of competent cells—in the new Life Technologies Molecular Biology Essentials catalog. Available now.

Order your new catalog today at www.lifetechnologies.com/molbiocatalog

For research use only. Not intended for any animal or human therapeutic or diagnostic use. ©2011 Life-Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life-Technologies Corporation or their respective owners.
CONFIDENCE COMES NATURALLY WITH AMBION®
COUNT ON THE RNA EXPERTS FOR CONSISTENT, SUPERIOR RESULTS

Backed by more than 20 years of experience and the industry’s most forward-thinking R&D team, Ambion® products provide innovative solutions for specialized RNA applications. Every kit is designed for superior performance—including MagMAX™-96 and mirVANA™ Isolation Kits that use novel binding methods to recover more RNA, and the Cells-to-C™ Kits that enable consistent results through optimized workflows. And they’re subjected to the industry’s most rigorous analytical testing and multifaceted QA/QC process to help ensure your success is no surprise.

Find the Ambion® products and resources you need to get started, including “The RNA Basics” article series, at www.lifetechnologies.com/ambion

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use. © 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.
AAAS is here – bringing educational infrastructure to the developing world.

AAAS is helping the Rwandan government rebuild its educational infrastructure as a way to help drive economic growth and development. By providing materials such as the Project 2061 Atlas of Science Literacy, lesson plans from Science NetLinks, and access to Science digital libraries, AAAS is helping the people of Rwanda work toward a future built around science and technology. As a AAAS member your dues support these efforts. If you're not yet a AAAS member, join us. Together we can make a difference.

To learn more, visit aaas.org/plusyou/rwanda

ENDNOTE X5.
AN INTELLIGENT ADDITION TO YOUR RESEARCH TEAM.

ENDNOTE® has consistently been the intelligent way to manage bibliographies. With EndNote X5, smart just became brilliant. As always, EndNote connects you to the brightest resources available and simplifies collaboration between colleagues. But EndNote X5 does a great deal more. It allows you to attach files to an EndNote Web record and transfer file attachments between the desktop and Web. It searches online for updated reference information while allowing you to view and annotate PDF files within an EndNote library. And it adds some incredibly ingenious options to the Cite While You Write® function.

Give EndNote X5 a try. Research documents will look absolutely brilliant. And so will you.

800-722-1227 • 760-438-5526 • rs.info@thomson.com

© Copyright 2011 Thomson Reuters. EndNote is a registered trademark of Thomson Reuters. All trademarks are the property of their respective companies.

Download your free demo or buy online today www.endnote.com
Short Courses: February 4–5
Conference: February 6–8
Exhibition: February 6–7

SLAS2012: Collaborate | Innovate | Dominate

Collaborate with 5,000+ innovative scientists, engineers, researchers and technologists from academic, government and commercial laboratories around the globe to inaugurate the First Annual SLAS Conference and Exhibition in San Diego, CA, February 4–8, 2012.

Stimulate your scientific creativity through 130+ outstanding educational presentations. Investigate new and emerging technologies from 275+ exhibitors. Calibrate your personal goals, accelerate your professional success and dominate the field of laboratory science and technology.

Learn more and register for SLAS2012 at SLAS2012.org

The Many Fields of Neuroscience
Shifting from Synapses to Society

In This Issue
Neuroscience has come a long way since the staining and identification of the neuron over a century ago. Now the field has joined forces with other disciplines such as chemistry, computer science, engineering, and psychology, creating areas of focus that range from individual cells to social communities. Combining specialties has helped progress the understanding of social behavior as well as various psychological disorders, which some say are the final frontiers in biological science.

See full story on page 708.

Upcoming Features:
Focus on China—December 9
BS/MS Scientists (online only)—January 13
Faculty: Lab Culture—February 3
FACTS & FICTION
Careers in Industry and Academia

Trying to figure out the next step in your career? Join us for a roundtable discussion that will look at facts and fiction surrounding academic and industry career options for PhD-level scientists. Get some nuts and bolts advice on how to research career options, what questions to ask, and how to best prepare for various careers.

- Do industry and academic careers require different skill sets?
- Do industry jobs have better compensation? Less autonomy?
- Do academic scientists have less work/life balance?

For answers view our roundtable discussion for free at:
ScienceCareers.org/webinar

Produced by the Science/AAAS Business Office.
Gene-Expression Analysis Exploits More Technologies

To quantify the expression of specific genes, researchers can use a variety of techniques, including arrays, PCR, and high throughput sequencing. However, getting accurate results still depends on precisely carrying out these methods, even with increasingly user-friendly technologies. In fact, as more scientists study gene expression, the standards for analysis are growing more rigorous to ensure that only accurate data are published. Likewise, software has been keeping pace, helping researchers follow protocols and analyze their results. By Mike May

One of the biggest challenges for researchers in today’s gene-expression analysis arises from choice. “A scientist needs to decide which technology to use—qPCR [real-time polymerase chain reaction], microarrays, or something like RNA sequencing. Those are the big ones,” says Heidi Kijenski, microarray marketing director at Agilent Technologies in Santa Clara, California.

Even the now old-school approach to analyzing gene expression by way of arrays keeps offering new twists. For example, the higher density (four-fold higher than the company’s previous technology) SurePrint G3 Gene Expression Microarrays from Agilent include one million oligonucleotide probes, which can be arranged to study two samples of 400,000 features each, four samples of 180,000 features apiece, or eight samples with 60,000 features for each. “These higher-density arrays come in catalogue or custom formats;” Kijenski says. “This allows a researcher the option of customizing the content for any gene-expression project.” She adds, “This includes any organism where the customer has the sequence.” Moreover, it takes only 2 weeks to get a custom array, and it doesn’t cost any more than a catalogue one. Even the catalogue versions offer considerable variety. “There are 31 organisms in all,” Kijenski says.

To enable even better performance, Agilent developed its new, compact SureScan Microarray Scanner. “It’s a smaller footprint and provides better sensitivity and image resolution,” Kijenski says.

Other companies are also pushing array technology to new capabilities. As an example, Kevin Cannon, vice president of gene expression at Affymetrix in Santa Clara, California, points out the company’s new Human Transcriptome and Splice Junction Array. “It includes almost 7 million transcripts—99 percent coverage of the human genes,” he says. “A comparative study by Stanford University researchers showed that this array was as sensitive as RNA sequencing in gene-expression profiling studies, and it’s more reproducible, faster, and more cost effective.”

In addition, Dara Wright, vice president of clinical applications at Affymetrix, notes that gene-expression signatures are becoming increasingly useful for clinical molecular pathology applications. The Powered by Affymetrix Program, for example, enables companies to license Affymetrix’s GeneChip technology to develop and clinically validate devices based on multiplex gene-expression signatures. Wright explains that the program’s current focus is primarily on developing prognostic cancer applications, and “after years of applied research and the anticipation of clinical utility, we are now seeing tests emerge for routine [clinical] use,” she says.

One such clinical application, developed on the Affymetrix gene-expression platform, is the Pathwork Tissue of Origin Test, which uses RNA extracted from a tumor to assess the expression of more than 2,000 genes. That gene-expression pattern can reveal features of the tumor, such as its metastatic potential.

MULTIPLEXING PCR
“A lot of researchers have been focusing on subsets of gene markers, or biomarkers,” says Handy Yowanto, global product manager at Beckman Coulter in Brea, California. The company’s XP-PCR Process for gene expression makes biomarker multiplexing easy, according to Yowanto.

This technology consists of four steps: total RNA isolation, reverse transcription to form cDNA, multiplex PCR amplification, and fragment separation. During the PCR step, says Yowanto, “The universal tags attached to gene-specific primers are used to amplify all of the target genes collectively.” He adds, “This minimizes the primer bias typically associated with traditional multiplexed applications.”

UPCOMING FEATURES
Outsourcing Lab Services—November 25
Genomics: Building Clinical Models—February 24
Toxicology: Animal-free Techniques—March 2
The specificity of this technology stems from the target-specific primers along with PCR-product separation using capillary electrophoresis. “This enables down to one-base fragment resolution,” explains Yowanto. In addition, he points out that researchers can “include multiple housekeeping genes as controls within a single reaction, so they don’t have to worry about well-to-well or run-to-run variations.”

The technology is beginning to gain traction, Yowanto notes and it’s being used in a range of applications. As examples, he mentions cancer research and microbial detection.

For primer design, researchers can use Beckman Coulter’s eXpress Designer software. In addition, Yowanto points out a few primer-design tips: “You should make sure that the primer is intron-spanning to minimize the interference with genomic DNA. Also, make sure primers are not designed where SNPs could occur because that might reduce the quantification.” He adds, “Designing primers will get easier over time as the users get more experience with this technology in different experiments.”

CPR FOR PCR

Getting accurate results from PCR demands considerable attention to detail. As early as 1997, Stephen Bustin, professor of molecular science at Queen Mary, University of London, realized this constraint. “It became clear to me early on that the way things were being done was not sufficient if you want to quantify the results,” he says.

Specifically, Bustin says, researchers often do not include enough information in their publications about how they perform quantitative PCR. “When there is information,” he adds, “it’s likely to be wrong. So there’s a real problem with peer-reviewed literature.”

In 2009, Bustin and his colleagues published the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines. Some companies quickly joined this fight. “Bio-Rad was certainly the pioneer,” says Bustin. “It has put a huge amount of effort in publicizing and implementing the guidelines with road shows and so on.” Some other large vendors—including Agilent Technologies, Life Technologies, and Thermo Fisher Scientific—also provide MIQE-compliant assays. Bustin also points out that qbasePLUS from Biogazelle in Zwijnaarde, Belgium, is “the only qPCR analysis software that complies with MIQE.”

According to Frank Bizouarn, field application specialist in the Bio-Rad gene expression division, “qPCR is the tool to analyze gene expression, but you need diligence in how you set up and run your experiments.” For sample preparation, he notes “Bio-Rad’s Experion automated electrophoresis station determines if the RNA quality is good or bad for gene-expression analysis.” He adds that Bio-Rad sponsored the first MIQE qPCR iPad app, developed by Michael W. Pfaffl of the Technical University of Munich and Affi Abdel Nour of the Polytechnic Institute of LaSalle Beauvais. “With this,” says Bizouarn, “you can check off MIQE guidelines as you go along.”

EXAMINING SINGLE-CELL EXPRESSION

“The population average is a lie,” says Marc Unger, chief scientific officer at Fluidigm in South San Francisco, California. “For gene expression, the population average of any given gene is not necessarily characteristic of any of the cells in the population.” For example, the histogram of gene expression of a particular gene’s intensity might show two peaks from two different groups of cells. The average—in the middle—would not represent the expression in any of the cells.

Instead of assessing the expression at a population level, some answers can only be found in single cells. “In lots of biological processes, single cells may be driving or dominating the behavior,” says Unger. As an example, he mentions cancer stem cells.

In looking at single cells, though, Unger encourages researchers to study multiple genes. “If you’re looking at only a few genes at a time,” he says, “then you will miss patterns in the expression.” He points out that the Fluidigm BioMark HD System for real-time PCR plus its Dynamic Array chips can simultaneously track 96 genes in 96 cells.

Not just any technology provides enough resolution to work with single cells. “By their very nature, single cells are tiny, which means there’s not much material to work with,” says Ken Livak, senior scientific fellow at Fluidigm. The microfluidic technology underlying the BioMark HD can actually control cells one by one.

To see how different cells vary in expression, though, a researcher must analyze many cells. In just three hours, according to Livak, the BioMark HD can analyze 96 cells, which can produce as many as 9,216 data points (from 96 genes in 96 cells).

EXPRESSION BY COUNTING

“All of the methods in the past that looked at gene expression were relatively indirect—measuring expression levels by labeling transcripts and hybridizing them to an array,” says Gary Schroth, distinguished scientist at Illumina, headquartered in San Diego, California. “The trend is very clear that the world is moving more and more towards sequencing or counting assays.” He adds, “RNA sequencing is more about counting and directly characterizing the molecules in your biological sample.”

In January 2007, according to Schroth, his group continued »
Digital Analyzer uses the fluorescent reporter on the nCounter design custom panels using their specific targets of interest. mRNA related to leukemia. Alternatively scientists can target molecular and quantifies 25 fusion-gene isoforms and 23 additional probe all allows the complex to be immobilized for data collection. The reporter probe carries the signal, and the capture barcode-labeled probes hybridize directly to a target molecule in the complex.

Washington, detects up to 800 target molecules in a single-tube platform from NanoString Technologies in Seattle, Washington, detects up to 800 target molecules in a single-tube reaction for analyzing gene expression, micro RNA (miRNA), and copy-number variation. “It’s a direct digital counting method,” says Chris Grimley, vice president of marketing at NanoString. Barcode-labeled probes hybridize directly to a target molecule in solution. The reporter probe carries the signal, and the capture probe allows the complex to be immobilized for data collection.

Researchers can select from a range of existing panels, including the recently launched leukemia panel, which simultaneously detects and quantifies 25 fusion-gene isoforms and 23 additional mRNAs related to leukemia. Alternatively scientists can design custom panels using their specific targets of interest.

The nCounter Prep Station processes the samples and the nCounter Digital Analyzer uses the fluorescent reporter on the probe to count the target molecules. “The workflow is simple and results are so reproducible that researchers choose not to run replicates,” says Grimley. “This performance combined with the fact that the technology is compatible with a variety of sample input types, such as [formalin-fixed, paraffin-embedded], is resulting in strong adoption by the oncology research community.”

COUNTING NONCODING RNA
“There’s lots of interest in noncoding RNAs, microRNAs,” says Dennis Fantin, product management leader for qPCR at Life Technologies in Carlsbad, California. In analyzing gene expression, results show that miRNA plays a regulatory role. “They don’t work through proteins, but interact directly with mRNA to inhibit translation,” says Fantin. “You can’t explain everything about gene expression with transcription alone.”

To help researchers study the gene-expression impact of mRNA, Life Technologies developed its TaqMan OpenArray MicroRNA Panels. Fantin adds that the company offers “predefined TaqMan, noncoding-RNA assays, which work just like TaqMan gene-expression assays.” For researchers who find new miRNAs and long noncoding RNAs and need an assay, Life Technologies offers a custom service.

Scientists can also use the nCounter miRNA Expression Assay Kits. “The human miRNA product includes more than 700 miRNAs,” says Grimley. The company also makes panels for mouse and rat miRNA. The study of miRNAs is becoming so popular that the company just launched its new nCounter miRGE assays, which enable the simultaneous detection and quantification of miRNAs and miRNAs in a single tube.

DEALING WITH EXPRESSION DATA
Datasets generated in gene-expression experiments keep getting bigger. “This is challenging when trying to analyze a whole dataset,” says Shannon Conners, JMP life sciences product manager at SAS in Cary, North Carolina. Beyond dataset size, researchers face other analytical challenges. “People want to look at several factors at once, and they want to remove effects that might be caused by samples being taken at different sites or times,” says Conners. She adds that researchers often want to search for correlations in gene-expression data acquired on different platforms.

SAS’s JMP Genomics software provides a wide range of analytical tools. For example, Conners says, “It includes tools for the analysis of continuous intensities from array data that work with very big datasets. It also includes tools for count data from high throughput–sequencing studies.” She adds that SAS tailors these analytical tools for specific data types. “For example, there are simplified workflows for things like RNA-sequencing analysis,” she says. These tools and more come in the new JMP Genomics 5.1.

The analytical tools from SAS and the other technologies discussed here reveal the growing power that comes from combining approaches to analyze gene expression. Today’s technological combinations make it faster and easier to dig deeper into gene expression under a wider range of circumstances.
RNA/DNA ISOLATION KITS

The MagMAX FFPE Isolation Kits are two new magnetic bead-based kits designed specifically for the isolation of both total RNA and DNA from formalin-fixed paraffin-embedded (FFPE) samples. The MagMAX FFPE kits offer the yield, purity, and downstream performance characteristics that scientists expect, while also delivering faster workflow protocols, higher throughput capacity, and eliminating user-exposure to toxic organic solvents typically associated with the FFPE purification process. To enhance user productivity, MagMAX FFPE Kits incorporate magnetic bead-based technology, yielding a workflow amenable to high throughput processing. Offered in a 96-well format, MagMAX FFPE Kits enable an automated-assist protocol, which can effectively reduce hands-on processing time by 50% or more. By substituting xylene-like solvents with a novel solubilization reagent, MagMAX FFPE kits combine protease enzymes and digestion additives. This combo-reagent allows users to eliminate the deparaffinization step of the protocol, and the toxicity associated with traditional FFPE processing.

Economist
For info: 760-603-7200 | www.lifetech.com

ChIP-Seq PREPARATION KIT

The Magna ChIP-Seq preparation kit is designed to simplify genome-wide profiling of DNA-protein interactions by chromatin immunoprecipitation and next generation sequencing (ChIP-Seq). In contrast to other products that support only part of the ChIP-Seq workflow, the Magna ChIP-Seq kit is a complete solution that provides a set of validated reagents for both chromatin immunoprecipitation and next generation library construction. These reagents, in combination with a detailed protocol and quality control guidelines, simplify the ChIP-Seq process to allow researchers to map interactions of histones, transcription factors, and other chromatin-associated proteins on a genome-wide scale. As successful immunoprecipitation is critical to construction of the sequencing library, the kit includes positive and negative control antibodies and a set of polymerase chain reaction primers that can be used as in-process controls or to verify technique. The kit has been used to construct ChIP-Seq libraries from as little as 1 ng of purified ChIP DNA, meaning that DNA segments associated with low abundance proteins can be sequenced.

EMD Millipore
For info: 800-645-5476 | www.millipore.com

ORGANIC RNA EXTRACTION

The new Direct-zol RNA MiniPrep facilitates efficient and consistent broad range purification of high quality (DNA-free) total RNA directly from samples stored in Tri-Reagent or similar acid-guanidinium-phenol reagents. This innovative procedure bypasses phase separation and precipitation with a spin column and eliminates problems with phenol carryover, all traits typically associated with organic extraction-based methods. The Direct-zol RNA MiniPrep is part of the ‘next gen’ of RNA prep that will meet the demands of today’s scientists requiring RNA that is ideal for stringent analytical methods like miRNA profiling, RNA-seq, and viral identification. The procedure couples the effectiveness of infectious agent inactivation and sample preservation with a convenient no hassle, no-mess procedure for DNA-free RNA.

Zymo Research Corporation
For info: 888-882-9682 | www.zymoresearch.com

cDNA SYNTHESIS KIT

The new iScript Advanced cDNA synthesis kit for RT-qPCR allows researchers to generate more real-time polymerase chain reaction (PCRs) data from a single 20 µL reverse transcription reaction for their gene expression analyses. With a maximum capacity of 75 µg of input RNA, the iScript Advanced cDNA synthesis kit for RT-qPCR surpasses the capacity of its nearest rival by 2 µg. The iScript Advanced cDNA synthesis kit for RT-qPCR offers additional advantages over competitor kits in terms of simplicity and speed. The kit has only two essential components: an iScript Advanced reaction mix and an iScript Advanced reverse transcriptase. The protocol takes only 35 minutes. The iScript Advanced cDNA synthesis kit for RT-qPCR offers excellent sensitivity and efficiency in both real-time PCR (using SYBR Green, EvaGreen, or probes) and conventional RT-PCR.

Bio-Rad
For info: 800-424-6723 | www.bio-rad.com

FISH PROBES

Stellaris FISH (fluorescence in situ hybridization) is an RNA visualization method that allows simultaneous detection, localization, and quantification of individual mRNA molecules at the sub-cellular level in fixed samples. Stellaris FISH probes are manufactured on a custom basis, including software for optimum probe design. In addition, premade probe sets for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in human and mouse applications are available. This novel RNA FISH technology represents a fast and easy-to-use method to achieve conclusive results through compelling images of RNA expression. By enabling scientists to localize and count discrete molecules of mRNA using widefield fluorescence microscopy, Stellaris FISH probes can lead to streamlined studies in stem cell, cancer, pathology, developmental biology, transcription regulation, and neuroscience research. Stellaris FISH can also be combined with existing technologies such as real-time polymerase chain reaction, DNA FISH, immunohistochemistry, and Western blotting to provide complementary information.

Biosearch Technologies
For info: 800-436-6631 | www.biosearchtech.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
The
gel-free,
blot-free,
hand-free
Simple Western is here.
The highest quality antibodies for the study of Epigenetics from Cell Signaling Technology

- Innovative products from Cell Signaling Technology offer unsurpassed sensitivity, specificity, reproducibility, and performance.
- Extensive in-house validation means optimization is not left up to you.
- Technical support provided by the same scientists who produce and validate the products translates into a thorough, fast, and accurate response.

TOP IMAGE: Heterochromatin is characterized by a repressive, tight packaging of nucleosomes, which impedes transcription factors from gaining access to regulatory sites on the DNA. Methylation of cytosine bases in regions called CpG islands, found in many gene promoters, leads to formation of transcriptionally repressed heterochromatin. Methylation of cytosine bases by DNA methyltransferases (DNMTs) facilitates recruitment of Methyl-CpG-binding Protein 2 (MeCP2), which brings along other associated proteins, including histone deacetylases (HDACs), histone methyltransferases (HMTs), and Heterochromatin Protein 1 (HP1). These proteins then facilitate the deacetylation and methylation of histone proteins, resulting in the formation and maintenance of the repressive state of heterochromatin. To view our epigenetics digital animation movie and for more information, please visit www.cellsignal.com.

for quality products you can trust...

www.cellsignal.com