cover in order to prevent the next influenza pandemic. We failed at containing the 2009 pandemic influenza simply because, among other factors, we do not have a comprehensive understanding of what makes an influenza strain transmissible in humans. We still do not know whether an H5N1 virus that gained the capacity to transmit by respiratory droplets in ferrets can effectively transmit by the same route in humans. We do know that the potential is there, but it is not through fear that we will stop H5N1 from becoming pandemic. The pursuit of knowledge is what has made humans resilient—a species capable of overcoming our worst fears.

References

PUBLIC HEALTH AND BIOSECURITY

Life Sciences at a Crossroads: Respiratory Transmissible H5N1

Michael T. Osterholm* and Donald A. Henderson

Two recently submitted manuscripts to Science and Nature report success in creating mutant isolates of influenza A/H5N1 that are able to be transmitted by respiratory droplet or aerosol between mammals (ferrets). The studies imply that human-to-human transmission could be possible as well. Shortly after the submission of the papers to the journals, the National Science Advisory Board for Biosecurity (NSABB) was asked by the U.S. government to address this question. The NSABB recommended that the papers not be fully published; rather, the basic results of the studies should be communicated without methods or detailed results but in sufficient detail to maximize the benefits to society of the studies’ findings. In turn, these recommendations were accepted by the U.S. government and shared with the authors and the editors of Science and Nature.

Some have asserted that these recommendations represent unwarranted censorship of scientific research and that the sharing of the results, particularly the specific viral mutations, is necessary to protect global public health. They argue that sharing the virus mutation information with global influenza surveillance organizations would result in the rapid identification of a potential H5N1 pandemic virus in birds or humans. This early information might permit health authorities to quash an emerging human influenza pandemic. In addition, they believe that knowledge of the mutations could enhance H5N1 vaccine research and manufacturing.

While considering the possible merits of a wider dissemination of more complete information regarding mutational changes of the newly created H5N1 strains, one fact must be kept in mind. The current circulating strains of influenza A/H5N1, with their human case-fatality rate of 30 to 80%, place this pathogen in the category of causing one of the most virulent known human infectious diseases.

Moreover, detecting an emerging pandemic virus in animals before the occurrence of a human pandemic is unrealistic; rather, the pandemic virus documentation will be “an after-the-fact record of what just happened.” For example, in the six countries of the world where highly pathogenic avian influenza H5N1 is endemic (Bangladesh, Cambodia, China, Egypt, Indonesia, and Viet Nam), the quality of public and private veterinary and animal production services is variable and low in some places (1). These countries are not often able to detect and respond to influenza A/H5N1 infections in birds. When H5N1 isolates are obtained, little to no gene sequencing is conducted, meaning that a mutation map of possible prepandemic viruses will not be generally available. Even if such laboratory support was readily available and samples from ill birds were processed in a timely manner, these countries lack the commitment to deal vigorously with H5N1. This conclusion was recently highlighted by the United Nations Food and Agriculture Organization (1, 2).

The World Health Organization (WHO) is also well aware of the magnitude of the challenge of identifying an emerging human influenza pandemic and stopping it before it spreads globally. Experiences with pan-
The Obligation to Prevent the Next Dual-Use Controversy

Ruth R. Faden**† and Ruth A. Karron

For the first time, the U.S. National Science Advisory Board for Biosecurity (NSABB) has recommended that research done by two separate groups be redacted, an unprecedented caution that has unleashed debate over the proper balance of global security, public health, and the integrity of science. Currently, the avian influenza virus H5N1 is not easily transmitted from human to human, but a high mortality rate in those who have been infected with H5N1 viruses has raised fears of possible naturally occurring mutations that would increase transmissibility (1). This concern prompted research conducted by Fouchier and colleagues and Kawaoka and colleagues, with funding from the U.S. National Institutes of Health (NIH), to understand the molecular characteristics underlying transmissibility. However, the NSABB found sufficient cause for concern over potential use of this research by terrorists looking to unleash, rather than prevent, a lethal influenza pandemic to warrant restrictions on access to critical technical details. Although Science and Nature agreed to redact the research for publication to help prevent the misuse of this science by hostile actors, they made that agreement contingent on establishment of a mechanism to allow appropriate researchers and public health officials access to the complete information.

Although the dilemma over publication of these research projects has generated substantial concern in the bioscience community, this challenge was neither anticipated nor previously unexamined. In part because of the anthrax attacks in 2001, the National Academy of Sciences convened a committee to analyze how best to minimize

**Philip Franklin Wagley Professor of Biomedical Ethics Director, Johns Hopkins Berman Institute of Bioethics Johns Hopkins University, Baltimore, MD 21205, USA.

†Professor, International Health, Director, Center for Immunization Research, Johns Hopkins Vaccine Initiative, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

*The author was a member of the committee that generated the Fink report (2). †Author for correspondence. E-mail: rfaden@jhu.edu

References and Notes

8. Centers for Disease Control and Prevention (CDC), H1N1 influenza vaccine doses allocated, ordered, and shipped by project area (CDC, Atlanta, GA, 2009); www.cdc.gov/ h1n1flu/vaccination/vaccinesupply.htm.

10. M.T.O. is a member of the National Science Advisory Board for Biosecurity. His views do not represent the official policy or scientific conclusions of the NSABB. None of the information contained in this commentary resulted from his participation as a member of the NSABB.
Life Sciences at a Crossroads: Respiratory Transmissible H5N1
Michael T. Osterholm and Donald A. Henderson

Science 335 (6070), 801-802.
DOI: 10.1126/science.1218612 originally published online January 19, 2012

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.