CELL TESTER
The new Cell Tester is a novel cell biology research tool that allows researchers to study the influence of mechanical force, stress, or strain on cells and how these cells react to stimuli. Working at a rate of over 1,000 measurements per second, the Cell Tester employs state-of-the-art optics, nano positioning, and force sensor technology to deliver sensitive, robust, and reproducible force measurements. This facilitates the quantification of the very small forces that individual cells can generate—in the order of tens to hundreds of nanograms. At the same time, the instrument uses miniature piezo crystal-based motors to push or pull cells to change their length or impose stress. For most cell types, fine alignment is achieved using a rotating stage and remote-controlled micro tweezers; however, a small subset of cells that produce high forces in relation to their size are instead held in place by a polymerizing mixture of natural biological compounds.

World Precision Instruments
For info: 866-606-1974 | www.wpiinc.com

PERSONAL SYNTHESIS WORKSTATION
EasyMax is a future-oriented personal synthesis workstation designed to replace the traditional round-bottom flask. It is simple to use, efficient, safe, requires no cryostat or PC and takes up only minimal fume hood space. EasyMax transcends traditional synthesis workstations to provide chemists with a platform for screening, optimization, and characterization. With its wide range of hardware and software accessories, the system can grow in line with specific requirements allowing more complicated applications and experiments to be executed as and when required. It operates with a clearly arranged, easy-to-use touchpad and has a built-in solid-state thermostat covering a temperature range from -40°C to +180°C, without the use of a cryostat. Experimental records are collected, stored, and can be transferred to a PC with a USB memory stick. A wide range of components and peripherals, optional software and seamless integration with online analytical techniques ensure a sustainable investment into the future.

Mettler Toledo
For info: 800-638-8537 | www.mt.com

SUPER-RESOLUTION MICROSCOPE SYSTEM
With the new Leica SR GSD (super-resolution, Ground State Depletion) imaging system, scientists can now achieve resolutions far below the limit of diffraction that have never been attained before in widefield fluorescence microscopy. The system is capable of resolving details as small as 20 nm. The Leica SR GSD is based on GSDIM technology (Ground State Depletion followed by Individual Molecule return). One of the key advantages of the GSDIM method is that it can be used with conventional fluorescence labels routinely applied in fluorescence imaging applications. GSDIM provides the highest resolution possible with a light microscope today, almost equaling that of an electron microscope. The Leica SR GSD is based on a fully automated TIRF system (Total Internal Reflection Fluorescence). The system can also be used for a wide range of applications in all areas of live cell microscopy and high-end fluorescence microscopy.

Leica Microsystems
For info: 800-248-0123 | www.leicamicrosystems.com

ORGANIC SYNTHESIS REACTION SYSTEM
The versatility, reproducibility, and productivity needed by contract research or synthesis laboratories are provided by the Carousel 12 Plus Reaction Station. The station has been designed to provide busy contract research and synthesis laboratories with an easy-to-use tool that simultaneously heat or cool, stirs and refluxes up to 12 samples (1–20 mL) under an inert atmosphere. In addition the Carousel 12 Plus includes a host of features that make it versatile, easy to use, easy to clean, and resistant to chemical corrosion as well as being energy efficient and having excellent reaction tube visibility. A removable reflux and gas distribution head that can be easily transferred, with tubes in situ, between the Carousel 12 Plus’ heated base, cooling reservoir or support stand, provides users with a uniquely versatile system for heated and cooled reactions.

Radleys
For info: 44-(0)-1799-513320 | www.radleys.com

ATOMIC FORCE MICROSCOPY SYSTEM
The Innova-IRIS is an integrated system for correlated atomic force microscopy and Raman spectroscopic imaging. Its unique combination of ultralow closed loop noise, no-drift mechanical stability, and wide-open optical access make the Innova AFM a uniquely suitable platform for challenging Tip-Enhanced Raman Spectroscopy (TERS) research. With hardware integration specifically designed to accelerate a TERS setup, and an IRIS software module that offers automated mapping, the system transforms today’s leading AFM and Raman instruments into a proven TERS-enabled research platform. The Innova-IRIS model leverages the leading performance and unique AFM head design of the Innova platform to provide TERS-ready AFM-Raman integration suitable for the sensitive interrogation of opaque samples. It is compatible with leading Raman systems and implements the optimized off-axis Raman geometry necessary for maximum sensitivity. With multiple simultaneous optical views, simplified approach curves for TERS signal evaluation, and automated mapping, the integration accelerates setup and data acquisition.

Bruker Corporation
For info: 805-967-1400 | www.bruker.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, major characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
New Products
(March 15, 2012)
Science 335 (6074), 1385. [doi: 10.1126/science.335.6074.1385-a]

Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/335/6074/1385.1

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl