Three-dimensional computer models such as this one help researchers explore the mechanisms behind core-collapse supernovae, the violent death of short-lived massive stars. In the image, tubes represent paths of gas falling into a supernova, deflected by an accretion shockwave (horizontal width of 600 km); colors represent different velocities. The question of how stars explode is one of the “Mysteries of Astronomy” described in a special News package beginning on page 1090.

Visualization: Hongfeng Yu and Kwan-Liu Ma, University of California-Davis and the SciDAC Institute for Ultra-Scale Visualization;
Simulation: John Blondin, North Carolina State University
CONTENTS continued
Continued growth in Asian pollution could warm

Asian Brown Cloud Threatens U.S.

Lack of stimulation may have robbed the

No New Neurons for Smell?

Skeletons of early farmers reveal the roots

of social inequality.

High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A Papaver somniferum 10-Gene Cluster for Synthesis of the Anticancer Alkaloid Noscapine

A biosynthetic pathway inherited as a gene cluster generates a pharmaceutically useful alkaloid in poppies.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion.

A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required.