The Norwegian Academy of Science and Letters announces the

2 0 1 2 W I N N E R S O F

THE KAVLI PRIZE™

Seven scientists whose discoveries have dramatically expanded human understanding in the fields of astrophysics, nanoscience, and neuroscience have been recognized with the award of the million-dollar Kavli Prizes.

The laureates were chosen for work that has led to a major revision of knowledge about our planetary system, pioneering contributions to the field of nanotechnology, and new discoveries of how the brain receives and responds to sensations such as sight, sound, and touch.

The Kavli Prize is a partnership between The Norwegian Academy of Science and Letters, The Kavli Foundation (US) and The Norwegian Ministry of Education and Research.

HM King Harald presents the Kavli Prize to the 2012 Laureates on September 4, 2012 at a ceremony in Oslo, Norway.

THE KAVLI PRIZE IN ASTROPHYSICS

MICHAEL E. BROWN
California Institute of Technology, Pasadena, CA USA

DAVID C. JEWITT
University of California, Los Angeles, CA USA

JANE X. LUU
MIT Lincoln Laboratory, Lexington, MA USA

“for discovering and characterizing the Kuiper Belt and its largest members, work that led to a major advance in the understanding of the history of our planetary system.”

THE KAVLI PRIZE IN NANOSCIENCE

MILDRED S. DRESSELHAUS
Massachusetts Institute of Technology, Cambridge, MA USA

“for her pioneering contributions to the study of phonons, electron-phonon interactions, and thermal transport in nanostructures.”

THE KAVLI PRIZE IN NEUROSCIENCE

CORNELIA I. BARGMANN
The Rockefeller University, New York, NY, USA

WINFRIED DENK
Max Planck Institute for Medical Research, Heidelberg, Germany

ANN M. GRAYBIEL
Massachusetts Institute of Technology, Cambridge, MA, USA

“for elucidating basic neuronal mechanisms underlying perception and decision.”

To learn more about The Kavli Prize please visit

www.kavliprize.no
www.kavlifoundation.org
THE RABBIT MONOCLONAL ADVANTAGE

SCRATCH & WIN

Win 5 Different Advantages!

3 Easy steps to Win

1. Place an online order for Epitomics Rabbit Monoclonal Antibodies (RabMabs) or related products @ www.epitomics.com

2. Receive your scratch card with your antibody

3. Scratch and Win!

Visit: www.epitomics.com/youradvantage for more info

Now Available

3300 RABBIT MONOCLONALS

Over 7000 Antibodies Total

What is the Rabbit Monoclonal Advantage?

Rabbit Monoclonal Antibodies (RabMabs) provide the combined benefits of superior antigen recognition of the rabbit immune system with the specificity and consistency of a monoclonal antibody, bringing you the highest quality antibody possible.

Published results from independent laboratories comparing rabbit monoclonal and mouse monoclonal antibodies have found RabMabs to offer increased sensitivity with similar or better specificity.

Comparison:

CDX2 RabMab vs. Mouse MAb

Paraffin-embedded human breast carcinoma tissue stained with Epitomics’ CDX2 RabMab (Cat# 2475-1) and Vendor A’s CDX2 Mouse Monoclonal at equivalent conditions.

Contact us:

US & Canada | 1-877-772-2622
Outside NA | 650-583-6688
Email | info@epitomics.com
Online | www.epitomics.com

Find out more

@www.epitomics.com/comparison
Super Inkjet Printer

Features

Smallest droplet
Droplet volume: 0.1 fL (femtoliter) - 10 pL

Wide range of viscosity
Viscosity range: 0.5 - 10,000 cps (non-heated)

Researcher-proven
Many relevant patents and papers

Super inkjet (SIJ) technology is an advanced inkjet microdeposition technology. It allows for ultra-precision printing down to the submicrometer scale by producing ultra-microscopic droplets which are 1/100th of the volume of conventional Inkjet droplets. We have experience in using a wide range of functional fluids such as conductive ink, Insulating Ink, resist Ink, UV Ink, solvent Ink, protein material, etc.

Patterning Example

Circuit pattern (Copper ink)

Protein material (albumin Φ10μm)

Microbumps (Silver ink)

Micro QRcode (250μm×250μm)

Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>SIJ-S030 (desktop system) ※includes PC, monitor and software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droplet volume (fL)</td>
<td>0.1 (femtoliter) - 10 pL (picoliter)</td>
</tr>
<tr>
<td>Line width (μm)</td>
<td>0.6 - several tens of μm</td>
</tr>
<tr>
<td>Applicable Viscosity Range (cps)</td>
<td>0.5 - 10,000 (non-heated)</td>
</tr>
<tr>
<td>Patterning design</td>
<td>Arbitrary shape (dot, line, circle, polygonal shape)</td>
</tr>
<tr>
<td>Patterning area</td>
<td>30×30 mm</td>
</tr>
<tr>
<td>Repeatability of work stage</td>
<td>±0.2μm</td>
</tr>
<tr>
<td>Power</td>
<td>AC100-120V ※A transformer is required for some areas.</td>
</tr>
<tr>
<td>Body size</td>
<td>620(W)×880(D)×690(H) mm</td>
</tr>
<tr>
<td>Customization</td>
<td>On your request</td>
</tr>
</tbody>
</table>

※) These specifications depend on ink.

Remarks

- Example of Application: Advanced technology, Alternative technology, Biotechnology, Optics technology, etc.
- Supported by Global Technical Collaboration, National Federation of Small Business Associations.

AIST Start-Up
SIJ Technology, Inc.

URL: www.sijtechnology.com/
E-mail: contact@sijtechnology.com
Quantify, verify, simplify

In science there are always essential steps in any workflow. Accurate measurements of DNA, RNA and protein samples are critical for confidence in qPCR, sequencing, microarrays or bioproduction, but there’s a better alternative to the time and complexity of conventional methods. Using minimal sample (0.5 – 2.0 µL), Thermo Scientific NanoDrop instruments make concentration and purity analysis so incredibly easy, and so much faster, you won’t notice this step on the way to your ultimate discovery.

Realize the difference. Try any NanoDrop instrument for FREE.
www.thermoscientific.com/nanodrop

© 2011 Thermo Fisher Scientific Inc. All rights reserved.
I seek the future.

MiSeq. Next-generation sequencing for all you seek.

You want amazing accuracy and performance on your benchtop. Illumina delivers—yet again. The MiSeq Personal Sequencer is the only fully integrated, truly end-to-end benchtop solution around. It’s just one more example of why Illumina solutions generate a remarkable 90% of all the world’s sequencing data. Discover what’s possible.

www.illumina.com/iseek
University Hospitals Case Medical Center Harrington Discovery Institute is ready to bring your drug discoveries to life, as part of The Harrington Project for Discovery & Development—a $250 million initiative to support the acceleration of medical breakthroughs.

We are proud to introduce the Harrington Scholar-Innovator Grant program, which provides applicants with the opportunity to receive:

- Grant funding totaling up to $200,000 over two years
- Expert mentorship and support
- Commercialization assistance to accelerate bringing your breakthrough to market

Applications are being accepted through August 1, 2012. Apply online at UHHDI.org/SCI.

Make your discovery a reality.
Prognosis for Nanotechnology Treatments

In This Issue
Nanotechnology-based tools and treatments promise sensitive disease diagnosis and accurate drug delivery. Most important, the physical features of nanometer-size materials provide capabilities that larger objects cannot match. Nonetheless, some of the challenges, such as biocompatibility and toxicity, require ongoing research and improved solutions. Despite these obstacles, some nanoscale approaches to medicine can already be used.

See full story on page 112.

Upcoming Features
Proteomics: Clinical Diagnostics—August 31
Genomics: Epigenomics—October 26
Tissue Engineering: 3-D/Scaffolding—December 7
Absolute Certainty

It’s your sample
Experience peace of mind with Eppendorf consumables in guaranteed quality and order your free sample on www.eppendorf.com/consumables

Don’t leave your results to chance:
> Unique features to make every day routines faster and easier
> Minimized risk of chemical leaching from our consumables
> Purity grades tailored to even the highest requirements

www.eppendorf.com

eppendorf® is a registered trademark of Eppendorf AG, Hamburg, Germany.
All rights reserved, including graphics and images. Copyright © 2012 by Eppendorf AG.
Prognosis for Nanotechnology Treatments

Nanotechnology-based tools and treatments promise sensitive disease diagnosis and accurate drug delivery. Most important, the physical features of nanometer-size materials provide capabilities that larger objects cannot match. Nonetheless, some of the challenges, such as biocompatibility and toxicity, require ongoing research and improved solutions. Despite these obstacles, some nanoscale approaches to medicine can already be used. By Mike May

Around the world, biomedical researchers are exploring the possible ways that nanotechnology could enhance human health. At the University of Melbourne in Australia, for example, Frank Caruso, professor of chemical and biomolecular engineering, explores a variety of self-assembly strategies to create particles for potential use as therapeutics. “We develop systems with defined physical and chemical properties to nanoengineer these systems to enhance payload delivery and achieve site specificity,” says Caruso. For drug delivery, the particles can be in the range of roughly 20 nm to 1 μm. “The size depends on the application,” Caruso says, “but targeting specific delivery sites usually requires a small particle to get it there.” He adds, though, that the actual size constraints also depend on a particle’s shape, plus mechanical properties like elasticity and even the particle’s surface chemistry.

The ideal drug delivery system should possess several features. Of course, it needs to get the drug to the intended target, but there’s more. The particle must also be biocompatible and biodegradable, so that the cellular machinery can break down the particle to release the therapeutic. Then, the remaining particle components need to be nontoxic. It seems like a lot to ask, but Caruso says, “There’s an enormous range of polymers that can be used for assembling particles.”

For example, Caruso and his team developed a polymer-based carrier with a roughly 10 nm–thick wall that could transport drugs. “It provides highly elastic mechanical properties that can be tuned,” Caruso says. “We’re working on understanding how size, shape, and elasticity influence biological interactions, and this helps us nanoengineer the control of drug release and the particle’s circulation lifetime.” He makes sure to add that such work depends on a multidisciplinary team, including biologists, chemists, immunologists, materials scientists, medical researchers, and more.

EASIER NANO-VIEWS
Some medical applications could benefit from a nanoscale view, like the one provided by field emission scanning electron microscopy (FESEM). Compared with conventional SEM, says Craig Schwandt, senior research scientist at McCrone Associates in Westmont, Illinois, “The biggest difference is the size of the beam, which is 100 to 1,000 times narrower in FESEM.” As a result, FESEM can distinguish structures that lie closer together than SEM can. “The best resolution for SEM is usually about 500 nm apart,” says Schwandt, “but FESEM can resolve artifacts that are only 1 nm apart.”

Robert Karlinsey, founder of Indiana Nanotech in Indianapolis, approached McCrone Associates about applying FESEM to a nano-size dental challenge. Karlinsey’s company developed a toothpaste called Clinpro 5000 (sold through a partnership with 3M in St. Paul, Minnesota) that reduces tooth sensitivity to pressure and temperature. Karlinsey wanted to understand the underlying cause of this improvement. Typically, tooth sensitivity arises from nerves inside the dentin. Karlinsey wondered if the toothpaste could be blocking the tubules that provide a pathway to the nerves, so that’s where he wanted to look.

“The dentin tubules are just over a micrometer in cross-section,” says Schwandt. “Conventional SEM can’t see down into the tubules.” However, FESEM images were able to reveal spheres—ranging in size from 100–500 nm in diameter—within the tubules after the toothpaste was applied.

UPCOMING FEATURES
Proteomics: Clinical Diagnostics—August 31
Genomics: Epigenomics—October 26
Tissue Engineering: 3-D/Scaffolding—December 7
This is just one example of a FESEM application in the realm of nano-imaging and medicine. As Schwandt says, “FESEM can almost get to the resolution of transmission electron microscopy.” He adds, though, that transmission electron microscopy requires extremely thin samples and other modifications that raise concerns over introducing artifacts. With FESEM, a sample requires virtually no preparation, which increases one’s confidence in generating accurate images.

Nano-size particles can also be used to monitor physiological processes. As an example, Philips Research in Hamburg, Germany, uses nanotechnology with magnetic particle imaging (MPI). In this technology, roughly 20 nm in diameter particles of iron-oxide get injected into the bloodstream and a specially designed magnetic field causes the particles to orient, like millions of compass needles all aligned along field lines, except for in a small area called the field-free point, where the field is zero. Then, applying an alternating electromagnetic field point causes the nanoparticles in the field-free point to oscillate. An antenna measures this oscillation, which correlates to the nanoparticle-concentration in the field-free point. The Philips platform will scan the field-free point over any desired area.

Jörn Borgert, a Philips senior scientist and project manager, says, “You could use MPI to measure the volume of blood ejected by the heart or measure the amount of blood in any location.”

In the future, the technique may be used in cardiovascular diagnostics. “MPI has the potential to be several hundred times more sensitive than MRI in detecting the nanoparticles,” says Borgert. “This may, in one examination, provide a physician with a comprehensive overview of the cardiac system by tracking nanoparticles through the body.”

So far, this product is not for use with human patients and is still in the research phase. “We’ve demonstrated feasibility in a technical sense, and we’re building a big enough system to find out if it works in a whole-body scenario,” says Borgert.

VIRAL SURVEILLANCE

In the United States, sepsis—a life-threatening condition that can arise from an infection caused by bacteria, fungi, or viruses—impacts almost two million people each year. A nanotechnology-based tool from Nanosphere in Northbrook, Illinois, however, helps medical professionals detect this infection from a blood sample and determine which drugs will be most effective.

The nanotechnology lies inside this system. “Verigene uses 13 nm in diameter gold particles with oligonucleotides stuck to their surface,” says William Moffitt, Nanosphere’s chief executive officer and president. For the blood stream–infection panel, oligonucleotides add function to the surface of the Verigene particles, which then bind to nucleic acids from the infection-causing pathogens. “Gold nanoparticles with oligonucleotides make highly selective probes,” says Moffitt. “They are very specific to the targets they will bind to, which makes the assays extremely accurate.”

Current methods for diagnosing sepsis can take up to 72 hours or even longer, but the Verigene platform provides results in about two hours. The Verigene assay starts with a blood sample that goes into the Verigene Reader, which includes a cartridge for the sepsis assays. Roger Moody, Nanosphere’s chief financial officer, calls the reader an “electromechanical device that manipulates a self-contained cartridge, which contains the reagents needed to perform a test.” Nanosphere’s sepsis assay remains under review by the U.S. Food and Drug Administration.

The company has a number of other assays in development. For example, Nanosphere has a test in clinical trials for Clostridium difficile, a bacterial infection that is growing in prevalence and can be life threatening. It also makes an influenza assay cartridge that is already approved for clinical use in the United States. Some other tests currently under way include ones for various forms of bacterial infections, intestinal infections, and genetic diseases.

CHIP TECHNOLOGY FOR TREATMENTS

As an expert in polymer chemistry at IBM for a quarter century, Jim Hedrick understands how to develop computer-chip applications, as he says, “make computers perform at outrageous speeds.” That requires plenty of nanotech-knowhow. When he met Yi Yan Yang, an expert in nanomedicine at the Institute of Bioengineering and Nanotechnology in Singapore, they discussed how microelectronics might impact medicine.

As a start, Hedrick and Yang worked on developing nanotechnology-based antimicrobials to make the most of their capabilities. “With Jim’s chemical expertise,” Yang says, “we can make polymers with predictable molecular weights, narrow molecular weight distributions, and controlled end-groups, which is an important feature for therapeutic polymers because different molecular weights provide a different pharmacological activity in the body.” Furthermore, the nano-size antimicrobial polymer assemblies possess a slight positive charge that attracts these polymers to the slightly negative bacterial cells. “So you can target these microbes,” Hedrick says. Upon contacting a bacterial cell, these antimicrobial polymers insert in the membrane and rip it open. Hedrick adds that these antimicrobial polymers are biocompatible and biodegradable.

Hedrick and Yang hope to aim these nano-darts at methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant tuberculosis. “A bloodstream infection, continued>
MRSA, requires an injection,” says Yang, “but for TB, we are looking for alternative delivery strategies.” Since their approach provides so much control over the size and properties of the antimicrobial polymers, they can experiment to see what parameters provide the best therapies for different applications. For example, Hedrick mentions that they recently created a nano-size antimicrobial polymer that knocks out gram positive and negative bacteria—such as MRSA and E. coli, respectively—as well as yeast and fungi.

COMBINING PARTICLES AGAINST CANCER Part of the challenge of using nanoparticles for drug delivery starts with combining the pieces. That turns out to be easy for James Tour, T.T. and W.F. Chao Chair in Chemistry at Rice University in Houston, Texas. He uses carbon clusters that are only a couple nanometers wide and 40–60 nm long. To make them soluble, he covers the surface with polyethylene glycol. Then, he puts the so-called functionalized carbon clusters in a solution that contains a tumor-targeting monoclonal antibody called cetuximab and a chemotherapeutic called paclitaxel.

“Just shake it up, and they find their place,” Tour says. That is, the three pieces bind together during the shaking, but they don’t make hard-to-break covalent bonds. “That way, you don’t have to hope that an enzyme comes along later to cleave off the drug,” Tour says.

Originally, Tour developed this therapy for head and neck cancers. Using this trio of carbon clusters, antibodies, and drug with radiation proves very effective. In fact, the two therapies combine to give more than the sum of the parts. “The radiation causes the cancer cells to express more [epidermal growth factor] receptors on their surface and the antibody binds to those sites,” Tour explains. “More targets leads to more drug delivered to the tumor.”

However, Tour doubts that this approach will move forward on the regulatory pathway for head and neck cancers because effective treatments already exist. Instead, he might aim at diseases that still need better therapies, such as pancreatic cancer and glioblastoma multiforme in the brain.

Other investigators also study nanoparticle-based drug delivery. For example, nanotechnology could help researchers target the limited number of surface receptors on tumor cells. Only some receptors make good targets, but they do not cover the entire surface of every tumor cell. Moreover, receptors continually turn over, with old ones being broken down and new ones being constructed, which further limits the availability of such receptors as sites for drug attacks. That made Erkki Ruoslahti, distinguished professor at Sanford-Burnham Medical Research Institute in La Jolla, California, interested in combining tumor-targeting peptides with drug-bearing nanoparticles.

“It seems like a perfect marriage,” Ruoslahti says. “Peptides have a relatively low affinity for their targets, but you could put many peptides on the surface of a particle, which makes up for their low affinity. Plus, you can add a payload.”

Other approaches for treating cancer rely on drugs migrating to the desired site via leaky blood vessels in tumors. “This is very inefficient,” Ruoslahti says. “Plus, nanoparticles are not very good at getting out of blood vessels.” So Ruoslahti’s team is working with tumor-penetrating peptides. These peptides target blood vessels around tumors and bind to the surface protein neuropilin-1, which activates a transport pathway that carries the proteins from the blood vessel into the tumor. So, if Ruoslahti turns a nanoparticle into a drug carrier and coats it with these proteins, it will find a tumor, work its way into it, and bring the drug right where it needs to be. “It could get the nanoparticles deep into the tumor tissue,” Ruoslahti says.

So far, some of the tumor-penetrating peptides seem specific to certain kinds of tumors and some seem to be more general-purpose. Ruoslahti adds that the tumor needs to express neuropilin-1. “Most do, and even overexpress it,” he says, “but some probably don’t.” His academic group is already moving one protein, called iRGD, to the clinic. “This protein includes an integrin-binding sequence that I discovered almost 30 years ago,” Ruoslahti says, “and we can make it a tumor-penetrating peptide.”

This approach could go far beyond cancer. Ruoslahti points out that the target could be atherosclerotic plaque, inflammatory arthritis, and so on. “Pretty much any disease is targetable,” Ruoslahti says. “It will be a very general approach.”

Still, Ruoslahti points out one fundamental issue that must be handled to make nanoparticles effective at delivering drugs. “Nonspecific uptake by the liver and spleen have not really been solved,” he says. “That reduces the ability of specific targeting and causes the potential for liver toxicity.” He adds, “It would be better if the nanoparticles fall apart and don’t concentrate except at the target.” Making that happen, though, will take more research.

Mike May is a publishing consultant for science and technology.

DOI: 10.1126/science.opms.p1200067
CONFOCAL PLATFORM
Combining high-performance optics, the fastest true confocal scanner, and the most sensitive detection system available, the Leica TCS SP8 is a single platform that can be upgraded to serve a wide range of imaging applications. Superresolution and supersensitivity imaging, single-molecule detection, CARS microscopy, high-content screening, electrophysiology, and deep-tissue imaging with more than one multiphoton source are all within the scope of the Leica TCS SP8—and are available as options that can be added on as the researcher’s needs change. At the heart of the optical core, Leica’s scanner options can be configured for resolution, speed, or field of view without compromise. Scanning speeds of 428 frames per second can be reached with the new 12 kHz Tandem Scanner, while the Field of View (FOV) scanner offers the largest available field of view.

Leica Microsystems
For info: 800-248-0123 | www.leica-microsystems.com

PROTEIN NANOARRAY
The NanoInk multiplexed NanoArray automated system enables detection, identification, and quantitation of clinically relevant, low abundance proteins from a wide variety of sample types. NanoInk assays consume much smaller sample and reagent volumes than traditional enzyme-linked immunosorbent assay and bead-based assays, generating more proteomic data with less starting material and lowering assay costs. NanoInk’s assays provide customers the choice of automated proteomic analysis or simple benchtop testing using standard immunoassay protocols. The automated format combines a small sample size advantage with the additional benefit of high throughput precision and speed. The latest NanoInk assay kits include all reagents, and SBS compliant consumables needed to conduct NanoArray studies on commercially available lab automation systems. Additionally, NanoInk array slides are compatible with 96- and 384-well sample microplates. Whether using the automated or manual assay format, NanoInk’s miniaturized immunoassay platform can extract multiplexed protein biomarker data from just 2 μL of sample.

NanoInk
For info: 847-679-6266 | www.nanoink.net

OLIGONUCLEOTIDE SYNTHESIS
For triplex, antisense, and gene targeting studies, the new RNA-type phosphoramidites provide nuclease resistance and stability, while the new ethyl phosphoramidites improve oligonucleotide stability and delivery into cells, making them ideal for therapeutic applications. Building on from the existing range of standard nucleobase RNA phosphoramidites and CPG supports, the modified RNA-type phosphoramidites comprise two new 2’-OMe RNA products, 2’-OMe-I and 2’-OMe-T. Oligonucleotides containing these modifications are ideal for triplex, antisense, and gene-targeting studies, as they form more stable hybrids with complementary RNA strands compared to equivalent DNA or RNA strands. Furthermore, when used in gene targeting studies, the addition of 2’-OMe residues into triplex forming oligonucleotides, confers the same nuclease resistance and stability as seen with duplexes. Oligonucleotides synthesized from these new ethyl phosphoramidites have a neutral charge and slightly lipophilic character, which improves their delivery into the cell.

Link Technologies
For info: +44-(0)-1698-849911 | www.linktech.co.uk

PARTICLE SIZE DISTRIBUTION ANALYSIS
A material’s particle size distribution can have a major impact on the desired characteristics and performance of a final product. The new SALD-2300 laser diffraction particle size analyzer measures wet or dry materials to ensure outstanding product quality for the pharmaceutical, food and beverage, ceramics, and electronics industries. The SALD-2300 provides continuous measurement in real time, at minimum one-second intervals. Its measurement range spans particle sizes from 17 nm to 2,500 μm, and users can select various sample amounts depending on measurement objectives. The instrument’s Wing Sensor II achieves high-resolution particle detection with its 78 concentric detector elements. In addition to the Wing Sensor II, one sensor detects side-scattered light, and five other sensors are used for back-scattered light. The SALD-2300 comes with WingSALD II software, which automatically calculates an appropriate refractive index based on the light intensity distribution reproduction method. This function eliminates the challenges associated with selecting refractive indices.

Shimadzu Scientific Instruments
For info: 800-477-1227 | www.ssi.shimadzu.com

UHPLC SYSTEM
The new nano-Advance Ultra High Performance Liquid Chromatography (UHPLC) system, for capillary and nano-flow LC-MS applications, delivers reproducible retention times with accurate gradients down to 50 nL/min. With run-to-run sample carryover typically less than 0.005%, the nano-Advance UHPLC delivers industry-leading separation performance critical to the success of many proteomics workflows. The nano-Advance UHPLC was specifically designed to eliminate dead volume and gradient delay wherever possible. When combined with Bruker’s unique CaptiveSpray Ion source, the combination can deliver up to twice the MS utilization rate of typical nano-LC systems coupled to nanospray MS sources. The increased mass spectrometry utilization rate enables more proteins and peptides to be identified and quantified in a single LC-MS run. The nano-Advance UHPLC delivers precise nanoliter-scale flow rates without the need for any split-flow due to the incorporation of two high-performance direct drive syringe pumps. There is also a third pump for trap loading and 2-D LC applications.

Bruker
For info: 510-683-4300 | www.bruker.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Launched in March 2012, **SCIENCE & DIPLOMACY** provides an open access forum for rigorous thought, analysis, and insight to serve stakeholders who develop, implement, and teach all aspects of science and diplomacy. **SCIENCE & DIPLOMACY** features a mix of original perspectives and research articles by leading science and diplomacy practitioners and thinkers. Learn more about the latest ideas in science diplomacy and receive regular updates by following @SciDip on Twitter and registering for free at www.sciencediplomacy.org/user/register.

WWW.SCIENCEDIPLOMACY.ORG

Senior Advisory Board

- Norman P. Neureiter (Chair), AAAS
- Peter C. Agre, Johns Hopkins
- Nicholas Burns, Harvard
- David C. Clary, Oxford and UK FCO
- Paula J. Dobriansky, Harvard
- Nina V. Fedoroff, Penn State and KAUST
- Richard N. Foster, Yale
- David A. Hamburg, AAAS
- Mohamed Hassan, IAP
- Neal F. Lane, Rice

Science & Diplomacy is published by the Center for Science Diplomacy of the American Association for the Advancement of Science (AAAS), the world’s largest general scientific society.
Illuminate Cancer Biology

The complexity of cancer systems biology requires innovative tools for interrogating the signaling pathways responsible for oncological transformation. Promega’s integrated tools for reporter gene analysis assure biologically relevant results in cancer research.

FuGENE® HD
The next generation transfection reagent, effective on almost every cell type with virtually no cell toxicity

ONE-Glo™ + Tox
Multiplexed reporter gene analysis with off-target toxicity detection in the same well

New! NanoLuc™ and pGL4 Tox Vectors
Introducing NanoLuc - the brightest, smallest, luciferase available - plus a new line of pGL4 response element vectors for mapping oncological pathways

To get a FREE sample of any one of these reagents, visit: www.promega.com/pathwaybiology