The Definitive Evolution of Genotyping

Axiom® Genotyping Solution. Survival of the fittest.
Axiom Genotyping Solution is the most powerful genotyping workflow delivering superior coverage of populations, disease genes, and rare variants at an affordable price.

- Unique GWAS, replication, and fine-mapping content on one array
- Unrivaled coverage of the exome, disease genes, and functional regions
- Cost-effective custom array design with 100% SNP conversion

Axiom Genotyping Solution adapts to the needs of your research—coverage and flexibility like never before. Contact your Affymetrix representative today or come see us at booth #918/920 at ASHG 2012.

Join our luncheon seminars:

Wednesday, Nov. 7, 12:45 – 2:15 PM
Room 302, Esplanade Level (South), Moscone Center
Population-optimized strategies and genotyping solutions for expanding our understanding of the genetic variations in complex diseases

Thursday, Nov. 8, 12:45 – 2:15 PM
Room 307, Esplanade Level (South), Moscone Center
Next-generation cytogenetics solution for constitutional and cancer research applications

Visit www.affymetrix.com/ashg to register for these seminars.

Box lunch will be provided. First come, first served.
MILLIONS OF STUDENTS AND RESEARCHERS USE ENDNOTE TO MANAGE THEIR REFERENCES AND CREATE BIBLIOGRAPHIES. WHY NOT YOU?

INTRODUCING

ENDNOTE® X6

With EndNote, you can:
• Access your references from anywhere and manage your EndNote library from multiple computers with EndNoteSync.
• Search hundreds of online resources to collect references and PDFs
• Format references for any project with patented Cite While You Write® technology
• Use the new PubMed direct export format to import records in fewer steps
• Create and share custom groups, smart groups, or combined groups
• Enjoy a FREE 2-year subscription to EndNote Web with advanced features
• And so much more!

1-800-722-1227 • rs.sales@thomson.com
endnote.com

© Copyright 2012 Thomson Reuters. EndNote is a registered trademark of Thomson Reuters. All trademarks are the property of their respective companies.
Quantify, verify,

In science there are always essential steps in any workflow. Accurate measurements of DNA, RNA and protein samples are critical for confidence in qPCR, sequencing, microarrays or bioproduction, but there’s a better alternative to the time and complexity of conventional methods. Using minimal sample (0.5 – 2.0 µL), Thermo Scientific NanoDrop instruments make concentration and purity analysis so incredibly easy, and so much faster, you won’t notice this step on the way to your ultimate discovery.

simplify

• Realize the difference. Try any NanoDrop instrument for FREE.
 www.thermoscientific.com/nanodrop
MiSeq. Next-generation sequencing for all you seek.

You want amazing accuracy and performance on your benchtop. Illumina delivers—yet again. The MiSeq Personal Sequencer is the only fully integrated, truly end-to-end benchtop solution around. It’s just one more example of why Illumina solutions generate a remarkable 90% of all the world’s sequencing data. Discover what’s possible.

www.illumina.com/seek
Improve your NGS performance
On any sequencing platform

Speed up and simplify your workflow with new preanalytic solutions for NGS

Achieve high-quality NGS data and get the most from precious samples with:

- Highly efficient and specific removal of ribosomal RNA
- Selective target enrichment of your genes of interest
- Unbiased whole genome amplification from a single cell
- High-precision, qPCR-based library quantification
- Outstanding results on any sequencing platform

Visit www.qiagen.com/goto/NGS and keep up-to-date on our expanding portfolio of new and innovative technologies for next-generation sequencing.
Transcriptome Analysis

Is true “single-cell” RNA-seq feasible?

Find out at www.clontech.com/rnaseq-single
or call 1.800.662.2566
Choose a Trusted, Experienced Partner
To Help You Advance Your Cancer Research Faster

Hoping to advance your cancer research more quickly? Start by combining Roche Applied Science's world-class reagents and instruments to rapidly, accurately study cancer at the level of the gene, transcript, protein, and cell.

As part of the world’s leading supplier of oncology treatments (Roche Pharmaceuticals/Genentech) and tissue-based diagnostics, Roche Applied Science is uniquely qualified to be your primary partner in cancer research, offering:

- **Performance you can trust, plus innovation:** Combine time-tested reagents with novel instrumentation that enables you to study cancer in new ways.

- **Flexible, efficient solutions that help you make more from less:** Obtain more results faster in many applications.

- **Our commitment to you:** Confidently rely on our dedicated service professionals, on-site reagent stocking, customized research solutions, and much more.

Let Roche help you reveal the cellular and molecular mechanisms of cancer. Learn more by visiting www.cancer-research.roche.com
Believe the unbelievable

The new Cytell™ Image Cytometer. With three clicks, more than 32 cellular measurements can be captured in under 2.5 minutes.

The next generation in image cytometry is here. Experience more. www.gelifesciences.com/cytell

Product for research purposes only. GE, imagination at work and GE monogram are trademarks of General Electric Company. Cytell is a trademark of GE Healthcare companies. © 2012 General Electric Company — All rights reserved. GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84, Uppsala, Sweden. First published May 2012.
New Products, Services, and Solutions

See More. Do More.

SignaLOCK™
ChemiWestern Kits
Each kit contains a powerful chemiluminescent substrate, a non-protein blocker, and a background-reducing wash buffer.

FAST
SENSITIVE
CLEAN
EASY

1-minute results
Femtogram level
Excellent signal : noise
Optimized protocol

Visit www.kpl.com/SignaLOCK_Science to learn about our introductory promotional pricing.

FASTER
SENSITIVE
CLEAN
EASY

Biological Analysis
Target ID & Validation
Molecular Pathology
Companion Dx
Validate IHC Results
Non-coding RNA
Stem Cell Research
Tumor Heterogeneity
Rare-cell Analysis

Exquisite sensitivity & specificity
Optimized for archival FFPE tissue
Easy 7-hour IHC-like workflow
Quantifiable and automatable
New assays in <3 weeks
Guaranteed assay performance

Lambda TLED™
Transmitted Light Source

High-output white light LED!

FEATURES
• >10,000 hour lifetime
• >25μsecs on-off time
• TTL control (with polarity switch)
• Very stable output
• Compact stand-alone design
• Easy installation

Produced by the Science/AAAS Custom Publishing Office

LIFE SCIENCE TECHNOLOGIES

Genomics

Epigenomics:
The New Technologies of Chromatin Analysis

In This Issue
Multicellular organisms are essentially clonal. Every cell possesses the same DNA as every other. So what distinguishes a liver cell from a neuron? Epigenetics, that constellation of noncoding RNAs, protein-DNA interactions, and molecular modifications that govern which genes are expressed and which stay silent. Epigenetic mechanisms influence processes from stem cell differentiation to cancer, and researchers are keen to understand how these events differ at the genomic scale—the so-called epigenome. The problem is daunting, but the research community is resourceful. The epigenome has never seemed closer.

See full story on page 546.

Upcoming Features
Tissue Engineering: 3-D/Scaffolding—December 7
The Connectome—January 18, 2013
Genomics—February 15, 2013
Simply Better Pipetting!

Eppendorf Xplor® and Eppendorf Xplor® plus—the electronic pipettes
People who give 100% every day deserve the best equipment.

The electronic pipettes Eppendorf Xplorer and Xplorer plus were specially designed for high professional standards to provide optimal support for you in your work.

> Intuitive handling: Selection dial and multi-function rocker
> Optimal ergonomics: Eppendorf PhysioCare Concept®
> High reproducibility: Spring loaded tip cone and individual adjustment
> NEW: Eppendorf Xplorer plus!

www.eppendorf.com/xplorer

eppendorf®, Eppendorf PhysioCare Concept®, PhysioCare Concept® and Eppendorf Xplorer® are registered trademarks and Eppendorf Xplorer plus is a trademark of Eppendorf AG.
All rights reserved incl. graphics and photos. Copyright © 2012 by Eppendorf AG.
Cambridge Healthtech Institute’s 12th Annual

The Protein Science Week

January 21-25, 2013
Renaissance Hotel & Palm Springs Convention Center
Palm Springs, California

PIPELINE 1: FORMULATION
Optimizing Biologics Formulation Development
Lyophilization and Emerging Drying Technologies
Protein Aggregation and Emerging Analytical Tools

PIPELINE 2: PURIFICATION
Protein Purification and Recovery
Higher Throughput Protein Purification
Protein Aggregation and Emerging Analytical Tools

PIPELINE 3: BIOTHERAPEUTICS
Recombinant Protein Therapeutics
Antibodies for the 21st Century
Bispecific Antibody Therapeutics

PIPELINE 4: EXPRESSION
Engineering Genes, Vectors, Constructs and Clones
Fine-Tuning Expression in CHO
Choosing, Designing, and Optimizing Hosts and Platforms

PIPELINE 5: PACKAGING
Protein Device Combinations
Lyophilization and Emerging Drying Technologies
Extractables and Leachables

Please use keycode L35 when registering

CHI-PepTalk.com

ADVANCE REGISTRATION RATES AVAILABLE
Register Early and Save up to $400!

Organized by Cambridge Healthtech Institute | www.healthtech.com
250 First Ave., Suite 300, Needham, MA 02494 | P: 781-972-5400 F: 781.972.5425

www.mrcgene.com (888) 841-0900
* Piotr Chomczynski, US patent 2010

MOLECULAR RESEARCH CENTER INC.
RNAzol is a trademark of Molecular Research Center, Inc.
Epigenomics: The New Technologies of Chromatin Analysis

Multicellular organisms are essentially clonal. Every cell possesses the same DNA as every other. So what distinguishes a liver cell from a neuron? Epigenetics, that constellation of noncoding RNAs, protein-DNA interactions, and molecular modifications that govern which genes are expressed and which stay silent. Epigenetic mechanisms influence processes from stem cell differentiation to cancer, and researchers are keen to understand how these events differ at the genomic scale—the so-called epigenome. The problem is daunting, but the research community is resourceful. The epigenome has never seemed closer.

By Jeffrey M. Perkel

“We’ve got the technology, we’ve got the need, people are starting to do this, the lack of reference sets and new technologies are holding the field back. That was why [epigenomics] was identified as a good investment.”

In early 2008, the U.S. National Institutes of Health (NIH) announced that it was earmarking $190 million over five years to study the problem of epigenomics. The effort, part of the NIH Roadmap Initiative, had several overarching goals, including creating a series of epigenomic reference maps for normal human cells and tissues and developing novel technologies to aid in that process.

According to James Anderson, director of the Division of Program Coordination, Planning, and Strategic Initiatives, the unit within the NIH’s Office of the Director that oversees the Common Fund (and hence, the Roadmap Initiative), epigenomics was a natural fit for the Roadmap, which is a cross-NIH funding mechanism that essentially concerns itself with grand challenges in the biological sciences.

Previously, he explains, researchers were attacking the epigenome piecemeal, but nobody could put it all together. After consulting with experts, NIH realized the field was fundamentally stymied by the lack of one essential resource: a reference dataset, an epigenomic metric against which other datasets might be measured. Without such a reference, a complete cataloging of all epigenetic marks and how they vary across development and disease could not possibly be completed. Yet at the same time, new technologies had been developed that for the first time meant the problem was not actually intractable, simply vast.

NIH decided to pull the trigger. “It all came together,” Anderson says. “We’ve got the technology, we’ve got the need, people are starting to do this, the lack of reference sets and new technologies are holding the field back. That was why [epigenomics] was identified as a good investment.”

Today, that labor is beginning to bear fruit. The NIH Common Fund, along with individual institutes and centers, has awarded 68 grants under the Epigenomics Program, which according to Anderson have yielded some 52 reference epigenomes—maps of DNA methylation and histone modifications across multiple cell types. (Those datasets join the fruits of an earlier, parallel effort, the National Human Genome Research Institute-funded ENCODE project (Encyclopedia of DNA Elements), which in September 2012 released 30 papers mapping not just DNA methylation and histone modifications, but also transcription-factor binding sites, higher-order chromatin structure, transcribed regions, and more across the human genome in nearly 150 cell lines; both those and the NIH Roadmap Epigenome Project datasets are freely accessible online.) But perhaps just as importantly, they have led to a slew of new epigenetic and epigenomic technologies that are providing researchers the tools to gain an increasingly clearer picture of what is really going on in cells at the genomic level.

Indeed, says Anderson, that’s really the point of spending all these millions. “Our intent is not to finish the epigenome. It is to transform individual investigators’ ability to do their work.”

ATTACKING THE METHYLOME

One researcher supported under the Epigenomics Program is Bing Ren, a member of the Ludwig Institute for Cancer Research in San Diego. Ren is principal investigator (PI) of a grant to establish one of four epigenome mapping centers charged with compiling the critical epigenomic maps. His center focuses on embryonic stem cells. The San Diego Epigenome Center has been awarded $15.7 million since 2008, which it has used to map both DNA methylation and some 20 histone modifications in both human embryonic stem cells (hESCs) and four hESC-derived cell types.

The significance of the Epigenome Project “is equivalent to sequencing the human genome,” Ren says. “When you have the human genome, then you have a blueprint to understand human development. But without a detailed understanding of the epigenome we can’t read that blueprint.”

UPCOMING FEATURES

Tissue Engineering: 3-D/Scaffolding—December 7

The Connectome—January 18, 2013

Genomics—February 15, 2013
The San Diego Epigenome Center builds its maps with the two key technologies of epigenomics: chromatin immunoprecipitation (ChIP)-Seq, which uses next generation DNA sequencing technology to identify the location of specific histone modifications across the genome, and MethylC-Seq, a genome-wide method for determining the position of 5-methylcytosine modifications.

MethylC-Seq is basically an optimized version of bisulfite sequencing for today’s blazing-fast next-gen DNA sequencers. The problem it solves is this: Standard DNA sequencing methods cannot distinguish cytosine from 5-methylcytosine (5-mC). But if the DNA is first treated with sodium bisulfite they can, because bisulfite converts unmethylated cytosines to uracil, which appears in DNA sequencer reads as thymine (T). By comparing bisulfite-treated samples against an untreated control, researchers can determine which bases were methylated and which were not.

Researchers have been using bisulfite conversion to interrogate methylation at the nucleotide level for decades, and in 2008 Joseph Ecker’s team at the Salk Institute in San Diego (Ecker is also an investigator in the San Diego Epigenome Center) updated the method for the Illumina Genome Analyzer. That’s MethylC-Seq. But in 2009 a new wrinkle appeared. That year, teams led independently by Nathaniel Heintz at the Rockefeller University in New York and Anjana Rao at Harvard Medical School reported that mammalian DNA contains a previously undiscovered methylated base, 5-hydroxymethylcytosine (5-hmC).

Bisulfite sequencing, as it turns out, cannot distinguish between 5-mC and 5-hmC, meaning that at least some sites reported as containing the former, may in fact contain the latter.

“What it means to the scientific community is that whatever information we had before is not true, because we don’t know what percentage of the apparent 5-methylcytosines are actually 5-hydroxymethylcytosines,” says Sriharsa Pradhan, head of the RNA Biology Division at New England Biolabs, which sells restriction enzyme-based kits to distinguish between the two bases.

This year, researchers finally developed strategies to circumvent this problem. The first, developed by a team in Cambridge, UK, and called oxidative bisulfite sequencing (oxBS-Seq), uses an oxidizing reagent (potassium persulfenate) to oxidize 5-hmC residues to 5-formylcytosine (5-FC), which reads as T after bisulfite conversion.

The second method, developed in a collaboration between Ren’s lab, Chuan He at the University of Chicago, and Peng Jin at Emory University, uses an enzyme to selectively protect 5-hmC residues. Called Tet-assisted bisulfite sequencing (TAB-Seq, commercialized by a Chicago-area firm named WiseGene), this method uses a ten-eleven translocation (Tet)-family oxidase enzyme to convert 5-mC to 5-carboxycytosine (5-caC), which also reads as T after bisulfite treatment. (The Tet enzyme progressively oxidizes 5-mC to 5-hmC, and then to 5-FC, and finally to 5-caC.)

First though, TAB-Seq uses β-glucosyltransferase to couple a glucose moiety to 5-hmC, protecting it from Tet. Thus, the only residues that should appear as cytosines during sequencing should be 5-hmC. Comparison with standard bisulfite-converted and sequenced DNA should reveal the balance of 5-mCs. (New England Biolabs’ EpiMark 5-hmC and 5-mC Analysis Kit is based on a similar principle; it uses β-glucosyltransferase to render a sequence resistant to a restriction enzyme.)

Ren and He’s team used TAB-Seq to decipher the methylene of human embryonic stem cells, identifying some 691,000 5-hmC sites. Based on the distribution of that epigenetic mark, Ren says, it appears that 5-hmC plays a role in regulating transcriptional enhancers. “This type of element has a high abundance of hydroxymethylcytosine,” he says, “and a correspondingly lower level of methylcytosine in the same sequence.”

New England Biolabs is working on an alternative method to interrogate 5-hmC directly. The company recently described the enzymatic properties of the PvuRts1 family of proteins, which binds 5-hmC (or its glucosylated form, 5-(β-glucosoxymethyl)cytosine) and cleaves 9 to 13 bases on either side, releasing a 24-base fragment with the modified base in the center. These fragments can then be sequenced directly, an approach the company calls “ABASEq,” (“like the musical group, but only one B,” Pradhan quips) in honor of ABA1, the PvuRTS1 family member used in the assay.

“You don’t need a bisulfite conversion; you don’t need any kind of Tet-based approach or oxidation-based approach,” Pradhan says. “Your sequence output is just going to align with the genome sequence.” According to Pradhan, the team has already used this approach to map 5-hmC residues in a mouse embryonic stem cell line, though those data are not yet published.

CATALOGING HISTONE MODIFICATIONS
Another recipient of NIH Epigenome Project funding is Brian Strahl, associate professor of biochemistry and biophysics at the University of North Carolina (UNC) School of Medicine. With UNC colleague Xin Chen, Strahl submitted an application focusing on the discovery of novel epigenetic marks.

“One of the questions we wanted to address is whether there were novel sites of histone modification that had gone undetected,” Strahl explains. “This is relevant because to really understand epigenomics, or even epigenetics, you need to know first what are all the modifications on histones to begin with.”

Put another way, you cannot map modifications you don’t know exist. Those can be of two types: known modifications in novel locations, and novel modification types.

To find both types, many researchers turn to mass spectrometry. Strahl and Chen, for instance, have used top-down proteomics analyses on a Bruker Daltonics 12-Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer to show that histone H2B lysine 37 in Saccharomyces cerevisiae contains a previously unknown modification.

“One of the peaks that came out … was, as far as we can tell, dimethylated on one particular lysine that had not been reported elsewhere,” Strahl says. “Unfortunately, we couldn’t link any particular biology to it; it’s just too new.”

Continued>
Genomics

That’s not to say the modification isn’t important, he says. “If the cell cares that much to burn so many ATPs to get a particular modification on a residue, it’s got to be there for a reason,” he says.

Researchers are also discovering entirely novel modifications. One team that has made several such discoveries is led by Ying-ming Zhao, a professor in the Ben May Department for Cancer Research at the University of Chicago and another Epigenome Project grant recipient.

Using high-resolution mass spectrometry, Zhao has discovered several new posttranslational modifications on histone proteins, including lysine propionylation and butyrylation in 2007, lysine crotonylation in 2011, and earlier this year, lysine succinylation and malonylation.

Zhao’s discovery of lysine crotonylation is actually a case study in why researchers should always verify what the computer tells them. In this case, that due diligence yielded a high-profile paper in Cell.

At the time, Zhao’s lab had already discovered lysine butyrylation. Now, using a high-end Thermo Scientific LTQ Orbitrap Velos system, they were trying to map sites of that modification. Normally in this type of study, researchers rely on computers to chew through the data and map observed ion masses against possible modifications. It’s simply too laborious to do it manually. But computers can make mistakes, so Zhao’s team double-checks the computer’s math.

When they checked the spectral assignments in this case, they noticed that some didn’t quite match up—they were off by 2 daltons (Da). Looking more closely, they were able to narrow down the modification’s molecular formula to C,H,O, a crotonyl group.

Using a homemade “pan-crotonyl” antibody, Zhao’s team used ChIP-Seq to tackle the mark’s distribution throughout the genome, and found that it is associated with transcriptional start sites, enhancers, and active genes, and also “plays a role in the reprogramming of gene expression in postmeiotic male germ cells,” he says.

OF READERS AND DOWNSIZING

Of course, a histone modification is just that: a modification. It’s like a genomic street sign, and signs don’t exist in a vacuum. There must also be proteins that add and remove those signs, and “reader” proteins that interpret what they mean.

To find those readers, researchers like C. David Allis, head of the Laboratory of Chromatin Biology and Epigenetics at Rockefeller University, sift through protein extracts, looking for activities that can recognize, add, or remove a given modification. The key, says Allis: “Fractionate, fractionate, fractionate.” Using that strategy, Allis says his team has begun to home in on what they believe are a family of enzymes that can add a crotonyl group to histones—that is, histone crotonylases.

The results are not yet published, so Allis is fairly tight-lipped. But he did reveal that “it has a functional sort of twist to it, some personality … that looks very exciting and different from what has been well-accepted for acetyl-lysine.”

Or Gozani, associate professor of biology at Stanford University, another Epigenome Project grant winner, uses an alternate strategy for reader identification, probing microarrays of modified histone peptides with purified candidate reader proteins. Currently, Gozani’s arrays contain about 100 peptides, and in one recent study his team, in collaboration with Dinshaw Patel at Memorial Sloan-Kettering Cancer Center in New York, used them to determine that a protein associated with DNA replication called ORC1 binds specifically to dimethylated lysine-20 on histone H4.

“There’s a lot of room left to discover new readers,” Gozani says. And there are a lot of new methods in the epigenomics application space to study them. But that doesn’t mean the field has achieved technological maturity, says Kenneth Zaret, codirector of the epigenetics program at the University of Pennsylvania School of Medicine. “Base technologies” like ChIP-Seq work best with immortalized cell lines that can provide the hundreds of thousands or even millions of cells required to make that technique work; when sample size is limited, during stem cell development or embryogenesis, for instance, these techniques are harder to pull off. What is needed, Zaret says, is a way to apply epigenomics approaches to smaller cell populations.

Already, he and others are making headway. Cornell University Professor Paul Soloway, with colleague Harold Craighead, has developed a nanofluidic approach called SCAN (single chromatin analysis at the nanoscale) to monitor groups of modifications simultaneously on anywhere from one to 10 nucleosomes—asking, for instance, whether a single nucleosome contains both H3K27-trimethyl and methylated DNA.

Zaret is using fluorescence-activated cell sorting to isolate discrete cell populations, which he then analyzes using a modified ChIP protocol. Applying that approach to nine transcriptionally silent genes in a few thousand mouse stem cell progenitors, Zaret’s team discovered distinct “prepatterns” that appear to position different sets of genes in different ways. Now the team is scaling this approach up to the genomic level.

Look for these data and more from the NIH Roadmap Epigenome Project in the months and years ahead. In the meantime, those hoping to mine the epigenome datasets can do so today at the Project’s official data-coordination website, www.genboree.org/epigenomeatlas.

Jeffrey M. Perkel is a freelance science writer based in Pocatello, Idaho.

DOI: 10.1126/science.opms.pl200069
DNA METHYLATION KIT
The new EZ DNA Methylation-Lightning Kit is for complete bisulfite conversion of DNA prior to methylation analysis by polymerase chain reaction (PCR), MSP, array, or next-gen sequencing. The ready-to-use liquid format Lightning Conversion Reagent is added directly to a DNA sample (as low as 100 pg) for conversion in about an hour. High yield, converted DNA can be eluted into minimal volumes using Zymo’s unique spin columns, 96-well spin plates or—a first of its kind—magnetic bead format. This new format enables bisulfite treatment of DNA to be used in conjunction with automated platforms (e.g., Tecan - Freedom EVO) for high throughput processing applications. The EZ DNA Methylation-Lightning Kit is designed to simplify DNA methylation analysis and epigenetic research.
Zymo Research Corporation
For info: 888-882-9682 | www.zymoresearch.com

METHYLATED DNA LIBRARY PREP
The NEXTflex Methyl-Seq 1 Kit is designed to enrich and prepare single, paired-end, and multiplexed methylated DNA libraries for sequencing using Illumina MiSeq, GAIIx, and HiSeq platforms while allowing for the multiplexing of up to 96 samples facilitating a methylene-level assessment of genomic DNA. NEXTflex Methyl-Seq Kit utilizes versatile MeDIP or MeCAP protocols for detection of methylated DNA allowing the user to easily assess the methylation state of the genome, quantify absolute DNA methylation levels, and identify differentially methylated regions. The NEXTflex Methyl-Seq 1 Kit includes “Enhanced Adapter Ligation Technology” resulting in library prep with a larger number of unique sequencing reads. This specially designed NEXTflex ligation enzymatic mix allows users to perform ligations with longer adapters and better ligation efficiencies. This kit also uses a completely gel-free protocol making the workflow compatible with liquid handler automation.
Bio Scientific
For info: 888-208-2246 | www.biooscientific.com

SINGLE-STRANDED DNA QUANTITATION SYSTEM
The Quantifluor ssDNA System is designed for highly sensitive quantitation of single-stranded DNA (ssDNA). The Quantifluor ssDNA dye enables quantitation of small amounts (as little as 200 pg per well) of ssDNA in solution, saving your valuable sample for downstream assays. For low-concentration samples, the new system delivers sensitivity several thousandfold greater than absorbance at 260 nm and has a higher dynamic range. The Quantifluor ssDNA System includes all the required reagents to deliver consistent ssDNA quantitation results. It is easy to set up on microplate or single-tube fluorometers and is available as an integrated solution with instrument pairing. Detecting and quantitating ssDNA is important for a variety of molecular biology research applications. These include studying ssDNA viruses, quantitating short synthetic ssDNA probes for site-directed mutagenesis, analyzing first-strand complementary DNAs (cDNAs), and quantitating bisulfate-treated DNA to study DNA methylation.
Promega
For info: 608-274-4330 | www.promega.com/qfss

DNA SAMPLE PREPARATION
PureGenome kits and reagents are designed for rapid and efficient next generation sequencing (NGS) sample preparation. With these reagent sets, library preparation has been streamlined to two steps in under two hours, followed by a short enrichment step, thus alleviating a typical bottleneck in the sequencing process. PureGenome library preparation is a simple, two-step process followed by amplification using EMD Millipore’s ultrahigh fidelity KOD Hot Start DNA Polymerase Mastermix. This unique polymerase amplifies DNA with high processivity in highly thymine-adenine (TA)- or guanine-cytosine (GC)-rich regions. The combined efficiency of library construction and accuracy of amplification enables maximum library yields from lower input DNA with minimal bias. The PureGenome NGS library preparation reagents are validated for Illumina platform-compatible NGS libraries; however, end users have the flexibility to optimize for other platforms.
EMD Millipore
For info: 800-645-5476 | www.emdmillipore.com/ngs

WHOLE GENOME AMPLIFICATION KITS
The new illustra Ready-To-Go GenomiPhi kits provide researchers with a predispensed, room temperature stable formulation for whole genome amplification, enabling a simplified workflow for obtaining large amounts of high-quality DNA from small genomic DNA samples. The new kits also deliver improved yields over the current GenomiPhi kits. Previous GenomiPhi kits contain liquid enzyme formulations that require storage at -80°C degrees. The new kits incorporate Ready-To-Go stabilization technology which delivers single-dose reaction mixes in a solid format that can be stored for months at the bench without the need for refrigeration. The new illustra Ready-To-Go GenomiPhi kits are available in two formats: Ready-To-Go GenomiPhi V3, which improves upon the current GenomiPhi V2 kit with more than double the previous DNA yield, and Ready-To-Go GenomiPhi HY, which is specifically developed for high yield requirements, achieving 40 to 60 μg DNA yield from just 10 ng of starting DNA.
GE Healthcare
For info: 800-526-3593 | www.gelifesciences.com/RTG-Genomiphi

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information. Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
INTRODUCING MERCK’S NEW POSTDOCTORAL RESEARCH FELLOW PROGRAM

Bringing important medicines and vaccines to people around the world through innovative science is what we do. At Merck, we strive to improve human life, achieve scientific excellence, operate with the highest standards of integrity, expand access to our products and employ a diverse workforce that values collaboration.

Developing Talent, Harnessing Innovation, Building for the Future

Merck Research Laboratories is proud to announce the launch of a new Postdoctoral Research Fellow Program that will build on our legacy of scientific excellence and innovation.

If you join us, you’ll be a part of a team of motivated scientists working to discover and develop medicines and vaccines that help meet the world’s unmet medical needs. You will work alongside outstanding researchers and collaborators as part of Merck’s industry-leading research and development organization. Our postdocs will:

• Work in unique laboratory environments with top capabilities, equipment, expertise and knowledge
• Obtain experience in drug discovery and development
• Generate innovative science resulting in high-quality external publications
• Participate in seminars, lectures and meetings, and have the opportunity to interact with the local scientific community
• Be positioned for choice careers in pharma, biotechnology, or academia

As a postdoc, you will receive a competitive salary and access to the full benefits programs offered by Merck.

At Merck, our passion is improving health. This is what keeps us at the forefront of scientific discovery and innovation. We invite you to apply.

To learn more about the MRL Postdoctoral Research Fellow Program, or to apply for a position, visit www.merck.com/careers/postdoc today, or scan the QR code for more information.
NEW ENGLAND
BioLabs
enabling technologies in the life sciences

Stick together.

New DNA Ligases and Ligase Master Mixes
New England Biolabs offers the most extensive selection of high-quality and performance-optimized DNA ligases and ligase master mixes to streamline your cloning experiments.

Our expanded portfolio now includes:
• Blunt/TA Ligase Master Mix, optimized for blunt-end and single-base overhang substrates
• Instant Sticky-end Ligase Master Mix, uniquely formulated for the rapid ligation of sticky-end substrates
• T7 DNA Ligase, specific for sticky ends
• ElectroLigase™ directly compatible with electroporation

Stick together with DNA Ligases and Ligase Master Mixes from NEB.

To request a FREE SAMPLE of our new DNA Ligase Master Mixes, visit NEBStickTogether.com

Blunt/TA Ligase Master Mix outperforms the competition

Duplicate ligation reactions of blunt or TA vector/insert pairs were set up according to the master mix vendors’ suggestions. Equal amounts of ligated DNA were used to transform NEB 10-beta Competent E. coli (NEB #C3019) and triplicate plating was performed. Transformation results were averaged and graphed as a percentage of the highest performing reaction, T/A ligation using the Blunt/TA Ligase Master Mix.

ELECTROLIGASE™ is a trademark of New England Biolabs.