Feature: Mussels Get a Helping Hand

The cover photograph shows a nearly buried mussels mound, with a helping hand extending from above to assist the mussels. The mussels are depicted as being in a natural, underwater setting, possibly a coastal or estuarine environment. The photograph captures the essence of environmental conservation, with the human hand symbolizing intervention or assistance. The mussels themselves appear to be partially Buried, indicating a natural state where the mussels are integrated into their aquatic habitat.

Caption:

“Nearly Buried, Mussels Get a Helping Hand
The Evolutionary Allure of Mussels”

This image illustrates the evolutionary allure of mussels, highlighting their natural camouflage and the role of human intervention in their conservation.

References:
- Ferry P. W. Melchels, Jan Feijen, Dirk W. Grijpma
- Nikki Hamers

Published by AAAS

www.sciencemag.org SCIENCE VOL 338 16 NOVEMBER 2012 857
RESEARCH ARTICLE
928 Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles
M. D. Lima et al.
Thermally driven actuators use a guest material within carbon nanotube yarns to generate fast torsional and tensile motions.
>> Perspective p. 893

REPORTS
932 Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures
M. Langecker et al.
DNA-based transmembrane channels exhibit gating responses and can be used for single-molecule detection.
>> Perspective p. 890
936 Coherent Phonon Heat Conduction in Superlattices
M. N. Luckyanova et al.
Coherent phonon transport is evidenced by linear increases of thermal conductivity with total superlattice thickness.
939 Evidence for a Dynamo in the Main Group Pallasite Parent Body
J. A. Tarduno et al.
Some pallasite meteorites might have formed when liquid FeNi from an impactor was injected into their parent body’s mantle.
>> Perspective p. 897
942 Evidence for Early Hafted Hunting Technology
J. Wilkins et al.
Damage on 500,000-year-old stone points implies their use on spears, perhaps by the ancestor of Neandertals and Homo sapiens.
>> Science Podcast
946 Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs
D. P. McCarthy et al.
Data for birds and protected area requirements yield estimated costs for maintaining worldwide diversity targets.
949 Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice
K. C. Luk et al.
Intracerebral inoculation of synthetic misfolded α-synuclein mimics Parkinson’s disease in wild-type mice.
953 Orbitofrontal Cortex Supports Behavior and Learning Using Inferred But Not Cached Values
J. L. Jones et al.
Inferred value can be used to both guide behavior and modulate learning in rats.
956 Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation
R. C. Wang et al.
a direct link between a cancer-promoting protein kinase and the control of autophagy is presented.
>> Perspective p. 889
960 A Rab32-Dependent Pathway Contributes to Salmonella Typhi Host Restriction
S. Spanò and J. E. Galán
Expression of a single effector protein allows a human-specific pathogen to replicate within normally nonpermissive mice.
963 Salmonella Inhibits Retrograde Trafficking of Mannose-6-Phosphate Receptors and Lysosome Function
K. McGourty et al.
A bacterial pathogen interferes with intracellular trafficking of receptors needed for host cell lysosomal-enzyme targeting.
968 Convergent Evolution Between Insect and Mammalian Audition
F. Montealegre-Z. et al.
In an example of convergent evolution, rainforest katydids hear using similar mechanisms to those found in mammalian ears.
>> Perspective p. 894
971 Offspring from Oocytes Derived from in Vitro Primordial Germ Cell–like Cells in Mice
K. Hayashi et al.
Mature, fully functional female gametes can be generated from mouse pluripotent stem cells.
975 A Genomic Regulatory Element That Directs Assembly and Function of Immune-Specific AP-1–IRF Complexes
E. Glasmacher et al.
Cooperative binding of transcription factors to composite genomic elements regulates T helper 17 cell differentiation.
>> Perspective p. 891
SCIENCE

TRANSLATIONAL MEDICINE

Integrating Medicine and Science

14 NOVEMBER ISSUE: http://scim.ag/stm111412

EDITORIAL: Regenerative Engineering

CT. Laurencin and Y. Khan

The future of tissue regeneration lies in "regenerative engineering," with biomaterials playing a key role.

COMMENTARY: What Is the Greatest Regulatory Challenge in the Translation of Biomaterials to the Clinic?

G. D. Prestwich et al.

Leaders in the field list the greatest barriers to biomaterials translation.

PERSPECTIVE: Tools for Building Vascular Networks

H. Bae et al.

Advances in generating vascular networks in biomaterials may aid translation of tissue engineering technologies.

PERSPECTIVE: Dynamic Environments—The Fourth Dimension

M. W. Tibbetts and K. S. Anseth

Four-dimensional cell matrices will aid in the translation of cell-based therapies.

REVIEW: Engineering Complex Tissues

A. Atala et al.

Advances in tissue engineering technologies will enable regeneration of complex tissues and organs.

REVIEW: Designing Regenerative Biomaterial Therapies for the Clinic

E.T. Pashuck and M. M. Stevens

Research, regulatory, and clinical aspects are considered for biomaterial translation.

>> Biomaterials section p. 899

SCIENCEPODCAST

Free Weekly Show for 16 November 2012

Listen to stories on biomaterials, preserving mussel diversity, early hunting technology, and more.

SCIENCECAREERS

Free Career Resources for Scientists

Tooling Up: Questions to Set Your Sails By (Part 1)

D. Jensen

Answering these six questions can help you choose your career path.

Careers in Biomaterials Science—An Overview

E. Pain

As biomedical applications emerge, materials scientists find new funding and research opportunities.

>> Biomaterials section p. 899

SCIENCE

TRANSLATIONAL MEDICINE

Integrating Medicine and Science

14 NOVEMBER ISSUE: http://scim.ag/stm111412

EDITORIAL: Regenerative Engineering

CT. Laurencin and Y. Khan

The future of tissue regeneration lies in "regenerative engineering," with biomaterials playing a key role.

COMMENTARY: What Is the Greatest Regulatory Challenge in the Translation of Biomaterials to the Clinic?

G. D. Prestwich et al.

Leaders in the field list the greatest barriers to biomaterials translation.

PERSPECTIVE: Tools for Building Vascular Networks

H. Bae et al.

Advances in generating vascular networks in biomaterials may aid translation of tissue engineering technologies.

PERSPECTIVE: Dynamic Environments—The Fourth Dimension

M. W. Tibbetts and K. S. Anseth

Four-dimensional cell matrices will aid in the translation of cell-based therapies.

REVIEW: Engineering Complex Tissues

A. Atala et al.

Advances in tissue engineering technologies will enable regeneration of complex tissues and organs.

REVIEW: Designing Regenerative Biomaterial Therapies for the Clinic

E.T. Pashuck and M. M. Stevens

Research, regulatory, and clinical aspects are considered for biomaterial translation.

>> Biomaterials section p. 899

SCIENCEPODCAST

Free Weekly Show for 16 November 2012

Listen to stories on biomaterials, preserving mussel diversity, early hunting technology, and more.

SCIENCECAREERS

Free Career Resources for Scientists

Tooling Up: Questions to Set Your Sails By (Part 1)

D. Jensen

Answering these six questions can help you choose your career path.

Careers in Biomaterials Science—An Overview

E. Pain

As biomedical applications emerge, materials scientists find new funding and research opportunities.

>> Biomaterials section p. 899

SCIENCE

TRANSLATIONAL MEDICINE

Integrating Medicine and Science

14 NOVEMBER ISSUE: http://scim.ag/stm111412

EDITORIAL: Regenerative Engineering

CT. Laurencin and Y. Khan

The future of tissue regeneration lies in "regenerative engineering," with biomaterials playing a key role.

COMMENTARY: What Is the Greatest Regulatory Challenge in the Translation of Biomaterials to the Clinic?

G. D. Prestwich et al.

Leaders in the field list the greatest barriers to biomaterials translation.

PERSPECTIVE: Tools for Building Vascular Networks

H. Bae et al.

Advances in generating vascular networks in biomaterials may aid translation of tissue engineering technologies.

PERSPECTIVE: Dynamic Environments—The Fourth Dimension

M. W. Tibbetts and K. S. Anseth

Four-dimensional cell matrices will aid in the translation of cell-based therapies.

REVIEW: Engineering Complex Tissues

A. Atala et al.

Advances in tissue engineering technologies will enable regeneration of complex tissues and organs.

REVIEW: Designing Regenerative Biomaterial Therapies for the Clinic

E.T. Pashuck and M. M. Stevens

Research, regulatory, and clinical aspects are considered for biomaterial translation.

>> Biomaterials section p. 899

SCIENCEPODCAST

Free Weekly Show for 16 November 2012

Listen to stories on biomaterials, preserving mussel diversity, early hunting technology, and more.

SCIENCECAREERS

Free Career Resources for Scientists

Tooling Up: Questions to Set Your Sails By (Part 1)

D. Jensen

Answering these six questions can help you choose your career path.

Careers in Biomaterials Science—An Overview

E. Pain

As biomedical applications emerge, materials scientists find new funding and research opportunities.

>> Biomaterials section p. 899