EDITORIAL
1009 Combating Hunger
M. S. Swaminathan

NEWS OF THE WEEK
1014 A roundup of the week’s top stories

NEWS & ANALYSIS
1016 Genetic Influences on Disease
Remain Hidden
1017 DOE Shifts Money From
Research Grants to New Projects
1018 As Open Access Explodes, How to Tell
the Good From the Bad and the Ugly?
1019 Genome Study Helps Contain MRSA
Outbreak—And Breeds New Questions

NEWS FOCUS
1020 In Search of the Wild Chicken
From Farmyard to the Lab
>> Science Podcast
1025 Making Sense of a Senseless Act
Korea Tackles a Mushromming Problem

LETTERS
1028 Barry Commoner’s Place in History
M. Egan
Climate Change–Induced Salinity
Threatens Health
P. Vineis and A. Khan
Journals: Increase Revisions, Not Rejections
E. K. Bowers
>> Report p. 1065

1029 CORRECTIONS AND CLARIFICATIONS

BOOKS ET AL.
1030 Spillover
D. Quammen, reviewed by D. G. Streicker
and A. B. Pedersen

POLICY FORUM
1031 The Contribution of Private Industry
to Agricultural Innovation
K. Fuglie et al.

PERSPECTIVES
1033 A Golden Era of Nobel Laureates
J. L. Goldstein and M. S. Brown
1034 Carbon Storage with Benefits
S. P. Sohi
1035 Can One Cell Influence Cancer
Heterogeneity?
A. V. Krivtsov and S. A. Armstrong
>> Report p. 1080
1037 Imaging the Deep Earth
G. A. Prieto
>> Report p. 1063
1038 Plant Gametes Do Fertilization with a Twist
W. J. Snell
>> Report p. 1093
1039 Algae Under Pressure and in Hot Water
P. E. Savage
1040 The Origin of the Moon
A. N. Halliday
>> Research Article p. 1047; Report p. 1052

CONTENTS continued >>

COVER
The lower hemisphere of a fast-spinning Earth shown 2 hours
after a giant impact. Colors denote the silicate mantles and
iron cores of Earth and the impactor. The debris evolves into a
Moon-forming disk composed primarily of material from Earth’s
mantle, explaining the isotopic similarity between Earth and
the Moon. In this model, the fast-spinning Earth is slowed by
an orbital resonance between the Moon and the Sun. See pages
1040, 1047, and 1052.

Image: Sarah T. Stewart

DEPARTMENTS
1006 This Week in Science
1010 Editors’ Choice
1012 Science Staff
1101 New Products
1102 Science Careers
REVIEW
1042 The Protein-Folding Problem, 50 Years On
K. A. Dill and J. L. MacCallum
>> Science Podcast

RESEARCH ARTICLE
1047 Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning
M. Čuk and S. T. Stewart
Computer simulations show that a giant impact on early Earth could lead to a Moon with a composition similar to Earth’s.
>> Perspective p. 1040; Report p. 1052

REPORTS
1052 Forming a Moon with an Earth-like Composition via a Giant Impact
R. M. Canup
Computer simulations show that a giant impact on early Earth could lead to a Moon with a composition similar to Earth’s.
>> Perspective p. 1040; Research Article p. 1047
1055 How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility?
S.-Y. Ding et al.
Microscopy techniques uncover the distinct mechanisms of different enzyme classes in breaking down cellulose for biofuels.
1060 Quantum-State Resolved Bimolecular Collisions of Velocity-Controlled OH with NO Radicals
M. Kirste et al.
Precise experiments on bimolecular collisions show that simplifications rendering theory tractable confer reasonable accuracy.
1063 Body-Wave Imaging of Earth’s Mantle Discontinuities from Ambient Seismic Noise
P. Poli et al.
Correlated seismic waves reveal that the mantle boundary at 410 kilometers is three times the thickness of the deeper one at 660 kilometers.
>> Perspective p. 1037; Science Podcast
1065 Flows of Research Manuscripts Among Scientific Journals Reveal Hidden Submission Patterns
V. Calcagno et al.
A large-scale study of biological manuscript submission history reveals how authors strategically submit their research.
>> Letter by E. K. Bowers p. 1028

1069 SAICAR Stimulates Pyruvate Kinase Isoform M2 and Promotes Cancer Cell Survival in Glucose-Limited Conditions
K. E. Keller et al.
A metabolite is identified that may help cancer cells coordinate their mode of energy generation with nutrient conditions.

1072 The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation
A. Choy et al.
An intracellular pathogen disrupts autophagy by targeting an essential host protein on the early autophagosome.

1076 Structural Basis of Transcription Initiation
Y. Zhang et al.
The bacterial transcription initiation complex reorganizes promoter DNA for nucleotide binding and RNA synthesis.

1080 Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice
D. Friedmann-Morvinski et al.
Murine brain tumors do not necessarily originate from neural stem cells but can arise from mature neurons and astrocytes.
>> Perspective p. 1035

1085 A Global Pattern of Thermal Adaptation in Marine Phytoplankton
M. K. Thomas et al.
Optimal growth rates for phytoplankton correlate with local temperature and predict movement toward the poles with warming.

1088 Decoding Human Cytomegalovirus
N. Stern-Ginossar et al.
A closer look at the human cytomegalovirus genome uncovers many new open reading frames.

1093 Egg Cell–Secreted EC1 Triggers Sperm Cell Activation During Double Fertilization
S. Sprunck et al.
The cysteine-rich proteins of Arabidopsis egg and central cells enable fusion with just one sperm each.
>> Perspective p. 1038

1097 Content-Specific Fronto-Parietal Synchronization During Visual Working Memory
R. F. Salazar et al.
Short-term memories are represented by large-scale patterns of synchronous activity across the fronto-parietal network.
Katydids may listen with their legs, but their ears are almost human. Rainforest Insects Hear Like Humans

Why Einstein Was a Genius

New photographs show unusual features in the great physicist’s brain. Why Einstein Was a Genius

Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature

Bdelloids Surviving on Borrowed DNA

The secret to the rotifers’ success may be their “genetic mosaic.” Bdelloids Surviving on Borrowed DNA

The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex

Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature

If you are a student, you may have difficulty justifying your research to yourself. Need a Purpose?

A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhancement of GABA in the Primary Hypersomnias by Endogenous TIMP3 mediates the beneficial effects of mesenchymal stem cells on blood-brain barrier integrity after brain injury. Research Article: Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury

Sleepy people mimics the actions of sedatives. A cerebrospinal fluid component in excessively sleepy people mimics the actions of sedatives. Enhance...