One source for all your immunoassay needs

Choose from a range of easy-to-use kits for over 600 targets. Get coverage of an extremely wide range of analysis including both extracellular and intracellular pathway targets such as cytokines, angiogenesis, adipokines, cell differentiation, growth factors, oncoproteins, signal transduction and many more.

Discover more at abcam.com/science
THE RABBIT MONOCLONAL ADVANTAGE

- More diverse epitope recognition
- High specificity and affinity
- Improved response to mouse antigens
- Highly validated - every antibody tested in WB, IHC, ICC, Flow Cytometry, and IP

Rabbit Monoclonal Antibodies (RabMAbs®) provide the combined benefits of superior antigen recognition of the rabbit immune system with the specificity and consistency of a monoclonal antibody, bringing you the highest quality antibody possible.

Over 4000 RabMAbs® online, visit www.epitomics.com

Find out more @ www.epitomics.com/advantage
New DNA Ligases and Ligase Master Mixes

New England Biolabs offers the most extensive selection of high-quality and performance-optimized DNA ligases and ligase master mixes to streamline your cloning experiments.

Our expanded portfolio now includes:

- Blunt/TA Ligase Master Mix, optimized for blunt-end and single-base overhang substrates
- Instant Sticky-end Ligase Master Mix, uniquely formulated for the rapid ligation of sticky-end substrates
- T7 DNA Ligase, specific for sticky ends
- ElectroLigase™, directly compatible with electroporation

Stick together with DNA Ligases and Ligase Master Mixes from NEB.

To request a FREE SAMPLE of our new DNA Ligase Master Mixes, visit NEBSTickTogether.com

ELECTROLIGASE™ is a trademark of New England Biolabs.
Produced and bioassayed in house with the highest purity and bioactivity.

Comparison of multiple lots, stringent product specifications, and rigorous quality control ensures maximum lot-to-lot consistency.

Endotoxin levels are routinely tested and are less than 0.01 ng/µg cytokine.

Many products are produced in mammalian cells to maximize natural conformation and glycosylation.

Multi-milligram quantities available.

The world’s highest quality antibody provider has now extended its expertise to cytokine production.

Human Interleukin-17A (hIL-17A) #8928

Purity

Bioactivity

Downstream Signaling

The production of IL-6 by human foreskin fibroblasts cultured with increasing concentrations of hIL-17A for 48 hours was assessed.

Human foreskin fibroblasts treated with hIL-17A for 15 minutes were examined using phospho- and total p38 MAPK antibodies.
It's time to rethink what you know about PCR. From digital PCR to real-time PCR, from thermal cyclers to reagents to our new wet-lab validated gene expression assays, Bio-Rad has been improving PCR for close to 25 years. Our philosophy is simple: give researchers an easier path to the best results. That way you can spend your time and focus on driving your research to new discoveries.

Find out more at bio-rad.com/ad/pcr2
MILLIONS OF STUDENTS AND RESEARCHERS USE ENDNOTE TO MANAGE THEIR REFERENCES AND CREATE BIBLIOGRAPHIES. WHY NOT YOU?

INTRODUCING ENDNOTE® X6

With EndNote, you can:
• Access your references from anywhere and manage your EndNote library from multiple computers with EndNoteSync.
• Search hundreds of online resources to collect references and PDFs
• Format references for any project with patented Cite While You Write® technology
• Use the new PubMed direct export format to import records in fewer steps
• Create and share custom groups, smart groups, or combined groups
• Enjoy a FREE 2-year subscription to EndNote Web with advanced features
• And so much more!

1-800-722-1227 • rs.sales@thomson.com
endnote.com
Reveal Your qPCR Super Powers!

Introducing the LightCycler® 96 Real-Time PCR System

- **Innovative optics for accurate results**
 Simultaneously capture 96 wells of data for maximum well-to-well consistency.

- **Intuitive touchscreen interface and powerful data analysis software**
 Speed time to results with an advanced yet easy-to-use system designed for both novices and experienced users.

- **Built on 14 years of real-time PCR excellence**
 Rely on Roche’s expertise in providing fast, flexible, and accurate real-time PCR systems that enable research breakthroughs.

Become a qPCR Superhero with the NEW LightCycler® 96 Real-Time PCR System from Roche! See the video at www.lightcycler96.com

Contact your Roche representative or call 800 262 1640 for more information.

For life science research only.
Not for use in diagnostic procedures.

LIGHTCYCLER is a trademark of Roche.
Call for 2012 Cozzarelli Prize Nominations

The PNAS Editorial Board is now accepting nominations through January 11, 2013, for the 2012 Cozzarelli Prize. This award recognizes scientific excellence and is given to six papers published in PNAS during the past year.

Nominations should include a citation and brief explanation of the merits of the work. The award recipients will be recognized during the PNAS Editorial Board Meeting and the NAS Annual Meeting Awards Ceremony on April 28, 2013, in Washington, DC.

For more information and a list of previous winners visit www.pnas.org/cozzarelliprize.
THE SECOND MOST NECESSARY EQUIPMENT IN THE LAB?

You never go into the lab without your goggles, so why would you start your project without SciFinder®? Used by top researchers, SciFinder is the only tool that provides access to the most comprehensive and trustworthy chemistry-related content. And that’s why SciFinder is the choice for chemistry research™.

Find out more at www.cas.org.
Spectracular!

Eppendorf BioSpectrometer® and Eppendorf μCuvette™ G1.0

Combining accuracy, sensitivity and guided operation, the Eppendorf BioSpectrometer offers outstanding flexibility in a small and robust instrument. The μCuvette G1.0 expands the measuring range of the Eppendorf BioSpectrometer and complements Eppendorf’s range of products for photometry.

> UV/Vis spectral range from 200 nm to 830 nm
> μCuvette G1.0 for measuring sample volumes ≥ 1.5 μL
> Attractive bundles on offer

www.eppendorf.com

Eppendorf®, the Eppendorf Logo® and Eppendorf BioSpectrometer® are registered trademarks of Eppendorf AG, Hamburg, Germany. Eppendorf μCuvette™ is a trademark of Eppendorf AG, Hamburg, Germany. All rights reserved, including graphics and images. Copyright © 2012 by Eppendorf AG.
The Beauty and Benefits of Science theme highlights the “unreasonable effectiveness” of the scientific enterprise in creating economic growth, solving societal problems, and satisfying the essential human drive to understand the world in which we live.

- Over 150 sessions on a range of scientific topics
- Learn about recent developments in science, engineering, education, and policy
- Network and connect with professionals from around the world
- Deep discounts on hotel and travel

Featured Plenary Speakers

Sherry Turkle
Massachusetts Institute of Technology
The Robotic Moment: What Do We Forget When We Talk to Machines?

Nathan Myhrvold
Intellectual Ventures
Modernist Cuisine: The Art and Science of Cooking

Robert Kirshner
Harvard University
The Beauty of the Accelerating Universe

Register Today at www.aaas.org/meetings

AAAS, publisher of *Science*, thanks the sponsors and supporters of the 2013 Annual Meeting
A new way to look at science

The new Science Reader app for iPad® from AAAS puts Science in your hands, wherever you go. Read abstracts, career advice, and highlights from our newest journals, Science Signaling and Science Translational Medicine. Plus, AAAS members can access full text articles from Science. Visit iTunes App Store™ or content.aaas.org/ipad for details.
This new annual award will honor an early-career cancer researcher who has performed outstanding work in the field of cancer research. Nominees must have received their PhD or MD within the last 10 years. The award winner will be invited to deliver a public lecture on his or her research and will receive a cash award of $25,000. The award winner’s Perspective will be published in *Science Translational Medicine*.

Nomination packages must include the following materials, written in English:

- A letter describing the nominee’s significant contributions to cancer research, including supporting publications. The letter should explain how the candidate’s research promises to make a lasting impact on the cancer field.
- Two letters of support from other individuals.
- The nominee’s curriculum vitae.
- A Perspective (1500 words maximum, 1 figure) written by the nominee describing their research project and explaining how it advances our understanding of cancer. The research described in the Perspective must be in the field of cancer and the nominee must have performed or directed the work within the last 10 years.

Submit nominations to WachtelPrize@aaas.org and put “Wachtel Award Nomination” in the subject line.
Cell Culture Enters the Third Dimension

Scientists have been culturing mammalian cells in flat petri dishes for decades, but a new generation of tools and techniques is now letting them grow three-dimensional cultures that more closely mimic the biology of real tissues. By Alan Dove

In 1907, Anatomist Ross Harrison removed developing neural tubes from frog embryos, placed them in a solution of frog lymph on a coverslip, and inverted the mixture over a glass slide with a depression in it so the explanted tissue could grow in a hanging drop. Neurons in these first tissue cultures continued their normal three-dimensional growth patterns, allowing Harrison to see how nerve fibers extended themselves during development.

Later generations of cell biologists moved tissue culture into two-dimensional petri dishes, where lines of transformed cells could establish uniform monolayers that were much easier to maintain and subculture than Harrison’s hanging drops. These 2-D cultures revolutionized virology and molecular biology. However, flat cells on a plastic plate are at best mediocre models for complex tissues in the body, and researchers kept trying to develop systems that would combine 3-D physiological relevance with 2-D convenience.

Now, advances in materials engineering, manufacturing, and cell biology are finally starting to turn 3-D cell culture from a finicky, specialized technique into a mainstream tool for biologists. The result is a slew of new platforms and methods, ranging from simple, easy-to-use products for growing tiny cellular spheres to esoteric technologies that recapitulate entire organs in vitro.

A LITTLE MOLD CAN BE A GOOD THING

 “[Some] of the problems through the years have been that the formats for 3-D cell culture have been expensive, cumbersome, [and] difficult to work with,” says Jeff Morgan, president and chief executive officer of Microtissues in Providence, Rhode Island. However, many scientists have been willing to tolerate these problems in order to use 3-D cultures. Indeed, even Harrison’s original hanging-drop method remains a staple technique in some areas of cell biology, despite its limitations.

Hoping to make 3-D systems more convenient and flexible, Morgan and his colleagues found a surprisingly simple solution: agarose. Cells grown on the ubiquitous gelling reagent can’t stick to its surface. That would be a disaster for conventional 2-D cultures, which depend on surface adhesion to form monolayers, but Microtissues turns nonadhesion into an asset. In the company’s system, cells fall into tiny wells molded into the surface of the agarose, where they form spherical structures.

“Microtissues’ 3-D petri dish is a micromolded nonadhesive hydrogel that the cells don’t attach to, which allows them to attach to each other,” says Morgan, adding that in this case “the cells are actually self-assembling.” The resulting spheroids form tight connections between cells, creating gap junctions and other features of intact tissues. So far, investigators have grown more than 40 different cell lines this way, including both primary and transformed cells.

Rather than sell preformed agarose plates, the company sells molds that researchers can autoclave and reuse as many times as necessary, casting new plates whenever they need them. The molds fit into standard 12- or 24-well plastic cell culture dishes. Within each well, a mold can create 96 microwells, so pipetting a
CLIMBING THE SCAFFOLD

No matter how flexible a platform appears to be, though, no 3-D culture system will cover all applications. “We appreciate that there’s no single technology for all needs, there’s horses for courses in many respects, and the investigator will select the tools and technologies most appropriate to enable them to answer their biological question,” says Stefan Przyborski, chief scientific officer of Reinnervate in Sedgefield, United Kingdom.

Reinnervate is one of several companies offering scaffold-based 3-D culture systems. Instead of growing into spheroids of a fixed size, cells in a scaffold can form sheets that mimic many types of animal tissues. In the early 2000s, Przyborski and his colleagues at Durham University were studying xenograft tumors that formed when they transplanted stem cells into animals. “The stem cells were producing all these complex tumors and tissues, and one of the major challenges of stem cell science is to be able to reproduce that level of complexity in vitro,” says Przyborski.

To do that, he created thin, highly porous membranes from polystyrene—the same material used for standard tissue culture plates. Cells can grow inside the porous membrane and form 3-D structures with multiple layers. Researchers can manipulate the system to recreate different types of environments, for example by placing the membrane at the bottom of a culture dish so that it only receives nutrients from one side, or suspending it to expose it to the medium on both sides. Because the scaffold is polystyrene, investigators can also coat it with collagen or other matrix molecules used with traditional 2-D cultures. Reinnervate now sells the membranes under the Alvetex brand name, in versions precut for standard cell culture dishes.

Though product manufacturers are taking pains to make 3-D culture user-friendly, newcomers to the technique should still expect some learning experiences. Technical support from the vendor is crucial. “We have technical services to help [customers] overcome any issues, help them optimize the system, and get the most out of the technology,” says Przyborski.

Besides adapting established cell lines from 2-D to 3-D culture, scientists may find themselves puzzling over other parts of their research routines. “One of the questions we get regularly is ‘how do you visualize cells in 3-D,’ because when you think about it all the imaging technologies are all built around 2-D cell culture,” says Przyborski. Reinnervate offers coaching on 3-D culture visualization as well as other common obstacles new users encounter.

Some problems of scaffold-based cell culture aren’t easy to solve though, at least not yet. One major challenge is that current scaffolding systems aren’t amenable to standard passaging techniques, so researchers have to restart new 3-D cultures from established 2-D lines periodically. Przyborski and his colleagues are working on methods that will address that, and are also developing perfusion techniques to feed scaffold-grown cells continuously. “If we maintain the cell line in 3-D, it adapts and becomes different and actually is more in vivo-like, so then you get more accurate data,” says Przyborski.

AN EXPANDING MATRIX OF CHOICES

Researchers who want to start using 3-D cultures will find themselves in good company; growing more tissue-like structures has become a major focus of both basic and applied research labs. “There have been technologies developed in the past few years that have enabled better 3-D cell culture, and also there’s a movement towards getting more in vivo-like data from cell systems,” says David Welch, associate director of global market development for primary and stem cell systems at Life Technologies in Carlsbad, California.

Don Finley, product manager at Sigma-Aldrich in St. Louis, Missouri, concurs: “3-D cell culture is perceived as a way to better mimic the in vivo situation and what’s in the human without actually having to use humans.” That motivation is especially powerful in the pharmaceutical industry, where recent clinical trial failures have highlighted the need for more

single aliquot of suspended cells into the dish will create 96 individual spheroids. That’s a lot easier than creating an equivalent number of hanging drop cultures. “A hanging drop might dry out, and a 96-well plate for the hanging drop is 96 pipetting steps. In our case we’ve got one pipetting step in a gel that makes 96 spheroids, and they’re in a hydrogel that’s stable for two weeks and beyond for long-term culture,” says Morgan. The number of cells in the aliquot determines the size of the spheroids, making the system easy to modify.

Researchers are already using the molds for a variety of studies. For example, “there’s exciting work with stromal-cancer cell interactions,” says Morgan, adding that by creating spheroids with mixed cell types tumor biologists can manipulate and study the interactions directly. To do this, researchers simply combine the two cell types into the desired ratio, pipet them onto a gel, and after they settle, the cells form a mixed spheroid with the different cell types interacting. In another project, investigators are seeding tumor stem cells into the agarose plates, allowing individual wells to host microtumors derived from single cells.

Algimatrix, which is derived from the tissues of marine sponges, has no growth factors in it. However, it allows researchers to fine-tune their cells’ environment.
predictive preclinical assays for drug efficacy and toxicity.

To help scientists move their cells into the third dimension, Life Technologies now offers three scaffolding products with different features: Get-trex, Cellstart, and Alginatrix. “Get-trex is derived from mouse tumors, and it contains within it a lot of growth factors and other things that can stimulate cell growth,” explains Welch. Cellstart, meanwhile, consists of exclusively human and recombinant materials, for researchers doing clinical research where animal components could cause rejection and other side effects. Alginatrix, which is derived from the tissues of marine sponges, has no growth factors in it. However, it allows researchers to fine-tune their cells’ environment. “You can change the hardness or the rigidity of the structure by adding a supplement, so you can make it softer or harder, and that makes it more or less amenable to different environments and different cell types,” says Welch.

Alginatrix isn’t the only tunable scaffold on the market. Hydromatrix, made by Alphagenix in West Lafayette, Indiana, is composed of synthetic peptide nanofibers. Altering the concentration of the Hydromatrix solution adjusts the 3-D architecture of the self-assembling peptides. The company also makes a scaffold called Maxgel, which includes human extracellular matrix components. Sigma-Aldrich carries both products, and also sells specially designed cell culture bioreactors manufactured by 3-D Biotek in North Brunswick, New Jersey. “I see this as a toolkit, and we’re at a stage where researchers are going to have to do what they do and help us understand what works best with different cell lines,” says Finley.

The diversity of choices underscores the need for tinkering and experimentation in getting a new 3-D cell culture system working. “It probably depends on the cell type and the application,” says Welch, adding that “not all matrices or technologies that have been developed work for all cell types.” Lisa Masterson, a product manager at Sigma-Aldrich, agrees: “I don’t really see any one particular matrix, whether it be synthetic or native, as being a huge winner at this point.”

PATIENT ON A CHIP

As lab suppliers and their early adopter customers work to set up relatively simple 3-D cell cultures, some scientists are pushing the far edge of the field into the realm of science fiction. One of them is Don Ingber, director of the Wyss Institute at Harvard University in Boston, Massachusetts. Flush with $37 million in funding from the Defense Advanced Research Projects Agency, Ingber and his colleagues are now building what amounts to a miniature person: a series of 3-D cell cultures and microfluidic devices that will form 10 interconnected artificial organs, providing a sophisticated in vitro model of human physiology.

Several of the organs are already working, and they’re enabling previously impossible experiments. “If you work on the lung and you want to get access to the lumen, [when] you have epithelial cells from a lung in a matrix gel in 3-D, they form spheroids, and you really can’t get to the center,” says Ingber. Animal models have normal lung lumens, but can’t be studied for long periods or manipulated as extensively as cultured cells. To get around that, Ingber’s team built a “lung-on-a-chip,” with epithelial cells growing on flexible membranes to form 3-D structures that resemble alveoli and microfluidic devices feeding and maintaining the cells. That system revealed that breathing motions may play a crucial role in the pathogenesis of bacterial pneumonia.

In another project, the team built a gut-on-a-chip, which allows human intestinal cells to grow in the presence of peristaltic straining forces. The cells organize themselves into villi, with gene expression patterns that mimic real human intestine. Moreover, the researchers were able to co-culture bacteria on top of the artificial gut without killing the cells. “We can start putting bacteria on the luminal face of the intestinal epithelium, and the human epithelial cells are perfectly happy. Normally in a 2-D culture we’d call that contamination and you’d have to kill the dish,” says Ingber.

Ingber concedes that the organ-chip prototypes have been difficult to build, particularly when it comes to introducing small numbers of cells into the minuscule growth chambers, but once established, the systems can survive for as long as a month. Microperfusion systems keep the cells alive, obviating the need for constant feeding and subculturing.

The investigators are now trying to iron out the bugs in the chips’ production, with an eye toward making them more widely available for research. “I think it’s one of these things where it’s not like any one technical thing is such a hurdle, it’s just putting it all together so people who know nothing about cells can use it,” says Ingber.

Ultimately, the researchers hope to recapitulate enough human biology in chip-based systems to provide reliable preclinical models of pathogenesis and drug activity. Replacing racks of mouse cages with incubators full of automated homunculi may sound far-fetched, but it’s exactly what Ingber intends to do: “I think one by one we’ll replace animal models.”

Alan Dove is a science writer and editor based in Massachusetts.

DOI: 10.1126/science.opms.p1200070
3-D HANGING DROP PLATES

The new Perfecta3D Hanging Drop Plates allow researchers to form and test reproducible 3-D cell cultures in a 96-well format. The unique design of the Perfecta3D Hanging Drop Plates simplifies and streamlines spheroid formation, culture, and subsequent testing of the 3-D cellular constructs without the aid of coatings or matrices. Spheroid cultures grown in Perfecta3D Hanging Drop Plates allow researchers to easily mimic tissue metabolic and proliferative gradients, capture complex cell-matrix and cell-cell interactions, conduct co-cultures, and monitor cell growth easily and regularly. Media and compounds can be added or removed from the top of the plate without requiring new equipment, and spheroids can be harvested for analysis. Users simply pipet a cell suspension into each channel; the channel shape causes the drop to securely hang from the bottom of the well. One spheroid forms per well, and the spheroid diameter is controlled by the cell type and number of cells added to each well.

3D Biomatrix
For info: 734-272-4688 | www.3dbiomatrix.com

3-D CULTURE CELL HARVESTING KIT

3-D cultures exhibit cellular behaviors and morphologies similar to those seen in vivo; however, the adaptation of 3-D culture models for studying biochemical processes has been impeded by the challenge of separating intact or 3-D grown cells from extracellular proteins comprising the 3-D matrix. The Cultrex 3D Culture Cell Harvesting Kit is based on a nonenzymatic approach that prevents biochemical degradation during processing and overcomes the problems associated with extracting cells from 3-D culture in BME or Laminin I. The quality of the harvested cells is ideal for Western blotting and RNA and DNA analysis. This new kit provides an optimized and standardized solution for the isolation and normalization of cell lysates from 3D Culture Matrix, BME, or Laminin I for subsequent biochemical analysis.

AMS Biotechnology
For info: +44-(0)-1235-828200 | www.amsbio.com

CELL CULTURE PLATFORM

The Cytoo 2D+ Cell Culture Platform is based on the use of micropatterns on plates to drive/control the behavior and localization of cells in cultures. Modifying cell shape can be a very efficient way to modify cell functions, including cell fate and differentiation. Cells are exquisite mechano-sensing systems and adapt permanently to their boundary conditions. Thus, contrary to the frequent opinion that classical 2-D culture on infinite adhesive substrates are more representative of cell behavior (as cells are ‘free’ to spread and move), these conditions introduce a considerable, and unnoticed, variability in cell functions. 2D+ Technology controls the 3-D shape of cultured cells by controlling the 2-D topology of cell adhesion and setting the cell shape in the z axis. Since each micropattern is identical (several hundred per well), cells perform in a reproducible and consistent manner. Thus, fewer precious primary cells and less replicates per data point are needed.

Cytoo
For info: +33-(0)-438-884705 | www.cytoo.com

3-D CELLULAR IMAGING SOFTWARE

Volocity 6.0 is a 3-D cellular imaging software featuring a suite of high-performance tools for exploring, interacting, and publishing 3-D imaging data from cells, tissues, and organisms and how they behave over time. The software is designed as a universal solution that provides users with significant functionality to visualize, analyze, and validate 3-D fluorescence images from a wide range of confocal microscopy, wide-field, and high-content screening systems, and is fully integrated for a seamless user experience. Beyond simple cells, the Volocity software can also organize and relate measurements according to biological classification such as nuclei, membranes, organelles, and proteins, making it easier and faster to perform an analysis and understand the results. The updated interface also enables users of all skill levels to perform complex and challenging biological measurements, thereby extending the power of 3-D analysis to a wider population of potential users.

PerkinElmer
For info: 877-754-6973 | www.perkinelmer.com

STEM CELL CULTURE MEDIUM

Stemline Pluripotent Culture Medium is a novel human pluripotent stem cell culture medium that provides a consistent environment for the long-term maintenance and growth of healthy pluripotent stem cells. Stemline Pluripotent Culture Medium performs equivalently to the leading medium for maintaining pluripotency and optimal growth rates and is produced more efficiently than traditional media, resulting in lower costs. Culturing pluripotent stem cells can be challenging as many media’s undefined, heterogenous mixtures can cause inconsistent growth rates and undesired spontaneous differentiation. The Stemline Pluripotent Stem Cell Culture Medium is serum-free, composed of fully defined components and has 80% less basic fibroblast growth factor than the leading pluripotent stem cell culture medium. This provides a consistent environment for long-term maintenance of optimal growth rates, viability, and pluripotency.

Sigma Life Science
For info: 800-325-3010 | www.sigma.com/stemlinepsc
Announcing our new partnership with NASA Federal Credit Union

Dear Member:

AAAS is committed to offering you member benefits that fit your needs and make your membership more valuable.

With that in mind AAAS is embarking on a new partnership with NASA Federal Credit Union that will provide you with access to a wide range of financial tools and products. Like AAAS, NASA Federal Credit Union is dedicated to serving the scientific community. This shared perspective is just one of the many reasons that we are embarking on this partnership.

As you may know, we have recently ended our banking relationship with Bank of America, but we’re confident that our new partnership with NASA FCU will provide you with a superior banking experience. NASA FCU offers members better ways to save and smarter ways to borrow with friendly, professional service – along with anytime, anywhere account access.

Moreover, unlike other financial institutions that have public stockholders, NASA FCU is a not-for-profit financial cooperative where being a member means being an owner, too. And as a member/owner, you will enjoy unique benefits like: better loan rates, higher dividends and state-of-the-art products and services.

We’ll be sending you more information about this great new benefit over the coming months. In the meantime, be sure to visit nasafcu.com/AAASpackage to apply for the new AAAS Platinum Advantage Rewards or Platinum Cash Rewards credit cards. You can also take a sneak peek at the AAAS Check Card and Checks coming soon.

Sincerely,

Ian King
Director of Marketing and Membership, AAAS
Easy access to what you need

lifetechnologies.com
Simple ordering for all the products from our trusted brands

Supply Centers
Instant, on-site access to key research tools

Instruments & Services Portal
Centralized management of instrument use & care

Your valuable feedback has influenced upgrades to our current e-solution options, and inspires new ideas for how we can simplify the way you buy our products and do business with us.

Tell us how we’re doing at lifetechnologies.com/contactus