A yin-yang symbol superimposed on a scanning electron micrograph of a mouse tissue alveolar macrophage (diameter: ~18 micrometers). Macrophages are immune cells that mediate inflammation, but they often play protective roles as well. Several age-related chronic diseases—such as metabolic syndrome, cardiovascular disease, and neurodegenerative disease—have an inflammatory component. See the special section beginning on page 155.

Scanning electron microscope image: © Dennis Kunkel Microscopy, Inc.
REPORTS

178 Quantum Back-Action of an Individual Variable-Strength Measurement
M. Hatridge et al.
The evolution of a quantum system can be tracked via a series of partial measurements that leave the system in a pure state.

182 Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity
N. Behabtu et al.
Exceptional carbon nanotube fibers are produced by a wet spinning process using longer nanotubes as feedstock.

186 Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients
M. Ma et al.
Polymer actuators are manipulated by changing hydration conditions and show strong contractile forces.

193 Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing
Y. Sakata et al.
A porous material retains its framework shape after guest molecules desorb if its crystallites are sufficiently small.

197 Glutamate-Dependent Neuroglial Calcium Signaling Differs Between Young and Adult Brain
W. Sun et al.
The expression of metabotropic glutamate receptors in brain astrocytes is down-regulated in early postnatal development.

199 Neural Basis of a Pollinator’s Buffet: Olfactory Specialization and Learning in Manduca Sexta
J. A. Riffell et al.
Hawkmoths supplement their innate repertoire of attractive flower odors by learning new ones via an octopamine pathway.

204 Ezh2 Orchestrates Topographic Migration and Connectivity of Mouse Precerebellar Neurons
T. Di Meglio et al.
During brain development, epigenetic mechanisms allow tangentially migrating neurons to retain topographical organization.

208 Multiple Fitness Peaks on the Adaptive Landscape Drive Adaptive Radiation in the Wild
C. H. Martin and P. C. Wainwright
Increased competition drives phenotypic adaptive specialization within Cyprinodon pupfishes in lakes in the Bahamas.

211 Suppression of Oxidative Stress by α-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor
T. Shimazu et al.
Ketone bodies, metabolites that accumulate during fasting, change gene expression by inhibiting histone deacetylases.

215 The COMPASS Subunit Spp1 Links Histone Methylation to Initiation of Meiotic Recombination
L. Acquaviva et al.
A protein involved in histone methylation targets the meiotic recombination machinery to chromatin.

218 JNK Expression by Macrophages Promotes Obesity-Induced Insulin Resistance and Inflammation
M. S. Han et al.
A kinase in macrophages is required for high-fat diet–induced metabolic changes and inflammation.

222 Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation
S. Shyh-Chang et al.
Unusual threonine metabolism in mouse stem cells influences genetic reprogramming via altered histone methylation.

227 Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
L. Redecke et al.
In vitro crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease.

238 Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine
B. Lewandowski et al.
A macrocycle threaded on a rod can catalytically insert several amino acids placed along its path into a peptide chain.

238 In vivo Crystallization and Serial Femtosecond Crystallography of Trypanosoma brucei Cathepsin B
L. Redecke et al.
The structure of a sleeping sickness parasite protease is determined by using an X-ray laser.

241 Multiple Fitness Peaks on the Adaptive Landscape Drive Adaptive Radiation in the Wild
C. H. Martin and P. C. Wainwright
Increased competition drives phenotypic adaptive specialization within Cyprinodon pupfishes in lakes in the Bahamas.

245 The COMPASS Subunit Spp1 Links Histone Methylation to Initiation of Meiotic Recombination
L. Acquaviva et al.
A protein involved in histone methylation targets the meiotic recombination machinery to chromatin.

247 JNK Expression by Macrophages Promotes Obesity-Induced Insulin Resistance and Inflammation
M. S. Han et al.
A kinase in macrophages is required for high-fat diet–induced metabolic changes and inflammation.

251 Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation
S. Shyh-Chang et al.
Unusual threonine metabolism in mouse stem cells influences genetic reprogramming via altered histone methylation.

255 Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
L. Redecke et al.
In vitro crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease.

259 Multiple Fitness Peaks on the Adaptive Landscape Drive Adaptive Radiation in the Wild
C. H. Martin and P. C. Wainwright
Increased competition drives phenotypic adaptive specialization within Cyprinodon pupfishes in lakes in the Bahamas.

263 The COMPASS Subunit Spp1 Links Histone Methylation to Initiation of Meiotic Recombination
L. Acquaviva et al.
A protein involved in histone methylation targets the meiotic recombination machinery to chromatin.

267 JNK Expression by Macrophages Promotes Obesity-Induced Insulin Resistance and Inflammation
M. S. Han et al.
A kinase in macrophages is required for high-fat diet–induced metabolic changes and inflammation.

271 Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation
S. Shyh-Chang et al.
Unusual threonine metabolism in mouse stem cells influences genetic reprogramming via altered histone methylation.

275 Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
L. Redecke et al.
In vitro crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease.
Science 339 (6116), 117-231.

ARTICLE TOOLS http://science.sciencemag.org/content/339/6116

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.