Finally a research tool that is readily available whenever and wherever you need it. Access and manage your EndNote library from anywhere, even your iPad, with EndNoteSync.

- Find full text for your references in one click.
- Search hundreds of online resources for references and PDFs.
- Watch your references appear as you write with patented Cite While You Write® technology.

START AT ENDNOTE.COM
Use Coupon Code: science13 for exclusive pricing
MiSeq®. Next-generation sequencing for all you seek.

You want amazing accuracy and performance on your benchtop. Illumina delivers—yet again. The MiSeq personal sequencer is the only fully integrated, truly end-to-end benchtop solution around. It’s just one more example of why Illumina solutions generate a remarkable 90% of all the world’s sequencing data. Discover what’s possible.

www.illumina.com/miseq
Gibson Assembly™ Cloning Kit

New England Biolabs has revolutionized your laboratory’s standard cloning methodology. The Gibson Assembly Cloning Kit combines the power of the Gibson Assembly Master Mix with NEB 5-alpha Competent *E. coli*, enabling fragment assembly and transformation in just under two hours. Save time, without sacrificing efficiency.

Making ends meet is now quicker and easier than ever before, with the Gibson Assembly Cloning Kit from NEB.

Visit NEBGibson.com to view the latest tutorials and to try our primer design tool.
WE'RE BRINGING A NEW PERSPECTIVE TO cancer metabolism research
FIRST WE MADE IT POSSIBLE – NOW WE’VE MADE IT EASY.

XF technology provides the easiest and most comprehensive assessment of cancer cell metabolism, measuring glucose and glutamine metabolism, and fatty acid oxidation of cancer cells in a microplate, in real-time!

— David Ferrick, PhD,
CSO, Seahorse Bioscience

The Seahorse XF® Extracellular Flux Analyzer

Measurements of cellular glycolysis are essential to understanding cancer, immune response, stem cell differentiation, aging, and cardiovascular and neurodegenerative diseases. The XF® Analyzer and XF Glycolysis Stress Test Kit make it easy to measure the three key parameters of cellular glycolysis in a microplate: glycolysis, glycolytic capacity, and glycolytic reserve, revealing critical information not evident in mitochondrial respiration measurements alone.

See what’s possible.
Scan this QR code to view videos and see what the XF Analyzer can achieve. Visit www.seahorsebio.com/science for more information!
The Clinical Aspirations of Microarrays

Although most microarray applications are currently research-use-only, this technology appears poised to move to the clinic for genomics-based applications. In fact, some products can already be used in medical diagnostics and many more are in development. For example, microarrays can be customized to detect small, specific genetic changes that indicate a particular disease. In the future, this technology will likely remain a useful tool for both research and clinical applications.

See full story on page 858.

Upcoming Features
Proteomics—March 1
Fluorescence Multiplexing—April 12
Proteomics: Maldi Imaging—May 31
Support the sciences.

Get rewarded.

Show your AAAS pride and reward yourself with the new AAAS Platinum Advantage Rewards Card from NASA Federal Credit Union.

Apply now and get **10,000 bonus points!**

Go to nasafcu.com/AAASpromo

Get **10,000 bonus points** if you sign up for a card and spend $3,000 within 90 days of account opening.

Learn more at nasafcu.com/AAASpromo.

Subject to credit approval. Membership in AAAS and NASA FCU is required. NASA FCU is federally insured by NCUA.
The Clinical Aspirations of Microarrays

Although most microarray applications are currently research-use-only, this technology appears poised to move to the clinic for genomics-based applications. In fact, some products can already be used in medical diagnostics and many more are in development. For example, microarrays can be customized to detect small, specific genetic changes that indicate a particular disease. In the future, this technology will likely remain a useful tool for both research and clinical applications. By Mike May

In today’s translational genomics research, says Seth Crosby, alliance director of the Genome Technology Access Center at Washington University School of Medicine in St. Louis, “The biggest challenge is interpretation.” Available technology makes it easy enough to collect information from someone’s genome. The tricky part comes in interpreting the clinical relevance of that information. “Then, one can say a variation in a particular gene is known to have such and such impact on the patient’s health or treatment options,” Crosby explains.

As an example, Crosby describes a clinically certified next generation sequencing panel of 45 oncology genes offered by Genomics and Pathology Services, Washington University’s clinical genomics laboratory. This panel is actively being used to profile tumors and guide the treatment of cancer patients. “We had to look at hundreds of papers,” Crosby says, “to build a clinical-grade database of authoritative interpretations for each clinically relevant mutation found in these genes.” He adds, “That took hundreds of Ph.D. and M.D. hours, reading through papers to identify the pertinent information.”

Crosby notes that, over time, clinicians might come to understand which changes in the genome impact a patient’s health and which are harmless. “Once the lists of relevant and irrelevant genes are narrowed down, and we have a sense of which polymorphisms are important, these could be used to create a very cheap array that would help detect diseases,” he says. Beyond being economical, microarrays also deliver manageable amounts of data. As Crosby explains, “Much of the genome is invariant.” So with microarrays, he says, “We collect only the data we need.”

Developing Diagnostics

In some cases, clinicians can link specific chromosomal defects with particular diseases, and microarrays bring new capabilities to this karyotyping, or counting and assessing the appearance of chromosomes. Down syndrome is one of the best-known examples, in which the person has an extra copy of chromosome 21. Although additions or deletions of entire chromosomes, and even defects in parts of them, can be seen under a microscope, microarrays reveal fine-detail changes in chromosomes. “Using microarrays as tools in cytogenetics is really accelerating,” says Andy Last, executive vice president of the genetic analysis business unit at Affymetrix in Santa Clara, California. When experts are asked in which areas microarrays are being used the most, many mention copy-number variation—the addition or deletion of specific regions of DNA, particularly those with clinical consequences.

“There are literally hundreds of syndromes [that have] chromosomal rearrangements associated with a particular phenotype,” says James Clough, vice president, clinical and genomic solutions at Oxford Gene Technology (Oxfordshire, United Kingdom). “Depending on the population being tested, traditional karyotyping under a microscope provides a diagnosis about 5–8 percent of the time, and a microarray provides an 18–25 percent diagnostic yield. The resolution is far higher with an array.” Still, he adds, “The challenge is determining if a small aberration is pathogenic or nonpathogenic, or a variance of unknown significance.”
To help researchers make such distinctions, Oxford Gene Technology supplies a range of microarrays, such as the CytoSure ISCA Arrays, which look for genetic defects involved with known syndromes, such as Prader-Willi and Williams-Beuren syndromes.

PerkinElmer (Waltham, Massachusetts) has also developed assays for distinguishing 15 kinds of tumors. Pathwork Diagnostics have identified a set of 2,000 genes that can be used to distinguish a tumor’s gene-expression profile. Using several thousand different transcripts and proprietary computational algorithms, researchers can perform robust statistical analyses which can reveal differences in the distribution of genetic variation between normal and diseased populations.

Creating Custom Tools

To apply microarrays to clinical problems, physicians need approved tools. One FDA-cleared diagnostic tool, the Pathwork Tissue of Origin test from Pathwork Diagnostics in Redwood City, California, uses an Affymetrix microarray to determine the tissue type in which a patient’s cancer started, such as breast or colon. Raji Pillai, senior director, product development and clinical affairs at Pathwork Diagnostics, says, “This test uses formalin-fixed, paraffin-embedded [FFPE] tissue from a patient’s tumor and 2,000 transcript markers to provide a readout of a tumor’s gene-expression profile.” Using several thousand different tumor specimens and proprietary computational algorithms, researchers at Pathwork Diagnostics have identified a set of 2,000 genes that can be used to distinguish 15 kinds of tumors.

When a pathologist receives a cancer sample that is difficult to identify visually, they can send it to Pathwork Diagnostics. “It takes four to five days to report out a result that’s interpreted by a pathologist in our lab,” says David Crawford, the company’s chief commercial officer. A company pathologist reviews the results to ensure the most accurate interpretation of this diagnostic.

In the future, the company hopes to develop microarray tests that determine a tumor’s tissue of origin and also distinguish between tumor subtypes. Such advanced tests might even “provide information on the [patient’s] predicted response to a particular therapy,” Crawford says.

In addition to being used for studying an individual’s genetic profile, microarrays can be used to explore genetic variations across different populations and cultures. For example, Jennifer Stone, market development manager at Illumina in San Diego, California, says, “We developed our Infinium HumanCore BeadChip family of microarrays to provide a solution for population-level or biobank studies.” Such research involves tens to hundreds of thousands of samples. “These genetic studies are on a scale above and beyond what’s historically been done,” says Stone. Because these microarrays accommodate a large number of samples, they provide an opportunity for researchers to perform robust statistical analyses which can reveal differences in the distribution of genetic variation between normal and diseased populations.

The HumanCore microarrays provide a standard set of over 300,000 SNP probes, which covers the entire genome and includes additional probes specifically focused on variants that exist in the population and lead to the loss of function of genes,” explains Stone. These new microarrays can also be customized, so researchers can study variants found in their own experiments or from public databases.

To explore genetic variations across entire populations, researchers need a family of flexible microarrays. Thus the second member of the HumanCore family, the Infinium HumanCoreExome BeadChip, includes the standard set of over 300,000 SNP probes plus 240,000 exome-focused markers. With this combination of markers, a scientist can compare single nucleotide variations between samples and potentially determine how they impact a protein’s production, as indicated by the exome-based markers.

As companies begin to create increasingly customized microarrays, there is a growing challenge in determining if a small aberration is pathogenic or nonpathogenic, or a variance of unknown significance.”
to continue on a microarray platform as you get closer to the clinic or transition to a more suitable and robust technology, such as [quantitative] PCR or sequencing.”

In a recent project, Expression Analysis worked with a client who had what Hurban describes as “a preliminary gene-signature panel that was very useful as a diagnostic in a certain indication area.” Researchers at Expression Analysis worked with patient samples from the sponsor to put that signature on microarrays. “We showed the validity of this panel,” Hurban says. “Ultimately, the sponsor wanted to turn this signature into a diagnostic and became concerned with the microarray results because the precision was a bit of a challenge.” Consequently, the client eventually turned to a PCR-based platform for the final diagnostic. As a result, Hurban says, “You might use a microarray to some point, and then go to another technology.”

Tomorrow’s Tools

The ongoing advances in sequencing technology have made more than a few experts predict the demise of microarrays. For example, Elizabeth Chao, director of translational medicine at Ambry Genetics in Aliso Viejo, California, says, “The expression arrays that I’ve been using for 14 years are incredible tools, but RNA sequencing is starting to replace microarrays in research and translation.” She adds, “Sequencing is not replacing microarrays in the clinical setting yet, but it probably will soon.”

The data generated by sequencing can be both beneficial and challenging. Sequencing provides a gigantic amount of data in a short period of time, but it can be difficult to interpret so much data. Chao is confident that interpreting sequencing data will improve rapidly. She says, “Bioinformatics has really come up, and new methods are making it possible to look at sequences across the entire genome.”

To evolve with changes in technology, some companies provide services that teach researchers to use the growing amounts of data. For example, Todd Smith, senior leader, research and application at PerkinElmer, says, “We can help people as they go from microarrays to DNA sequencing.” This can include analytical techniques for handling the higher volume of data. These technologies, though, will likely complement each other, according to Smith and his colleagues. “There are applications where microarrays work best, and others where sequencing works best,” says Williams. “There are areas where sequencing won’t work well, but microarrays can.” As an example, Williams says they are about to start a study that involves 160 samples that must be processed in a matter of weeks. “There’s no way we could go through that with sequencing and get it turned around in time to have meaningful data,” he says. Moreover, Smith says microarrays are superior to sequencing when it comes to searching for structural variations in a genome.

Though some experts may have differing opinions, the general consensus predicts that microarrays will continue to benefit basic research and provide clinical tools related to genomics. In the end, microarrays will advance where they work the best.

Mike May is a publishing consultant for science and technology.

DOI: 10.1126/science.opms.p1300072
DNA ISOLATION WORKSTATION

Designed to meet the needs of biobanks and high throughput genomic laboratories, the Freedom EVO-HSM workstation provides reliable walkaway extraction of gDNA from large volume blood samples using Promega’s proven ReliaPrep Large Volume HT gDNA Isolation System. The Freedom EVO-HSM workstation is designed to streamline biobanking workflows, offering intelligent one-tube gDNA extraction from up to 32 samples in less than four hours. The compact system is controlled by the intuitive TouchTools touchscreen interface and features preinstalled protocols. Using the platform’s liquid level detection function, the system is able to automatically calculate the reagent volumes for each sample, ensuring efficient walkaway extraction of high-quality DNA from 1–10 mL of blood and meeting the specific requirements of next-generation sequencing methods.

TECAN

For info: +41-(0)-44-922-81-11 | www.tecan.com/reliaprep

NUCLEIC ACID SIZE SELECTION

SPRIselect utilizes Solid Phase Reversible Immobilization (SPR)-based chemistry to speed and simplify genomic DNA size selection for next generation sequencing fragment library preparation. Following shearing, the library construction process requires size selection to produce uniform distribution of fragments. SPRIselect allows size distribution to be adjusted between 150 and 800 base pairs to suit the application and sequencing platform. The process can be performed manually or automated for high throughput in 96-well plates. SPRIselect reagent kits are available in 5, 60, and 450 mL volumes, enable rapid and consistent size selection, and come with guidelines to assist users in customizing protocols. Gel cartridges, chips, and additional instruments are not needed. Samples should be fragmented, double-stranded DNA of 50 μL or greater and dissolved in molecular biology grade water, or such standard buffer solutions as Tris or TE. SPRIselect is ideal for use in most common next generation applications, including paired-end, single-end, targeted, ChiP, and RNA sequencing.

BECKMAN COULTER

For info: 800-742-2345 | www.spriselect.com

HIGH-CONTENT PEPTIDE MICROARRAYS

PEPperCHIP Peptide Microarrays are synthesized with a laser printer-based technology directly on the chip. The benefits of this approach are a unique flexibility in terms of custom peptide content, a high spot density, and reduced material consumption enabling very attractive chip prices. Microarrays are provided on conventional object slides (containing 9,000 individual peptides) and other glass slide formats with up to 275,000 peptide spots. Assays can be performed using fluorescently labeled proteins or sandwich immunoassays. The PEPperCHIP platform is suitable predominantly for antibody characterization by epitope mapping and epitope permutation scans. PEPperCHIP microarrays further allow the profiling of antibody immune responses in blood sera linked with infection, immunization, autoimmune diseases, or cancer. Besides antibody analysis, PEPperCHIP microarrays are also suitable for peptide drug development. The PEPperMAP services include microarray design and synthesis as well as immunoassays, read-out, data evaluation, and reporting.

PEPPERPRINT

For info: +49-62-21726-4489 | www.pepperprint.com

SINGLE-CELL WHOLE-GENOME AMPLIFICATION

DNA sequence analysis and genotyping of biological samples using innovative instrumentation is often limited by the small amount of sample available. The new REPLI-g Single Cell Kit is specially designed to uniformly amplify genomic DNA (gDNA) from single cells (<1,000 cells to as little as one bacterial or tumor cell) or purified gDNA, with negligible sequence bias and maximized genome coverage. The kit uses innovative Multiple Displacement Amplification (MDA) technology to deliver high yields of DNA that is highly suited for use with, and delivers outstanding results on, new technologies such as next generation sequencing platforms. The REPLI-g Single Cell Kit can also be used for a broad range of sample types, including purified gDNA, fresh or dried blood, and fresh or frozen tissue. Innovative ultraviolet treatment eliminates any detectable trace of residual DNA in the kit components, ensuring highly reliable amplification.

QIAGEN

For info: 800-362-7737 | www.qiagen.com

LIGHT CYCLER SYSTEM

The new LightCycler 96 System offers highly accurate, reproducible, and fast data generation for researchers working in a wide range of fields such as gene expression and genetic variation research. The system permits flexible adaptation of workflows to specific assay formats and throughput needs. It also provides guided navigation and intuitive software for first-time users as well as a full set of analytical capabilities for experienced operators. The data generated by the system can be analyzed directly or remotely for translation to publication-ready results in line with MIQE guidelines. The instrument’s new silver block ensures outstanding temperature homogeneity and therefore enables a maximum of data consistency and accuracy. In addition, the new Light Cycler 96 puts the user right at the center by providing highly intuitive, user-friendly software and interfaces. Thanks to its innovative glass fiber optics, the Light Cycler 96 System offers equal and simultaneous data capture from all 96 wells, while avoiding the signal variations commonly seen in systems that use optical scanning. It is also calibration-free as it does not require a passive reference dye.

ROCHE

For info: +49-88-56605-468 | www.roche.com
Meeting Global Challenges: Discovery and Innovation

Scientific discovery and innovation are helping to drive solutions to current and future global challenges. Economic progress in every community worldwide has meanwhile become increasingly interdependent with advances in science and technology. Challenges related to ensuring sufficient food for a growing population, quality healthcare, renewable fuels, and a sustainable and enriching environment demand innovation and international dialogue. Addressing these challenges depends upon discoveries emerging from the convergence of physical, life, engineering, and social sciences in innovative ways that are most useful to society.

In a weakened global economy, many countries have begun to limit their investments in the future. Yet, investments in innovations — including funding for education as well as basic and applied research — represent our best prospect for a sustainable environment and increased economic growth. Economists estimate, after all, that innovation in science and technology are the source of more than half of the economic growth in many countries. By increasing innovation in sustainable products and processes, world economies can continue to enhance human welfare across society.

Innovation springs from the translation, production, and distribution of discovery and invention to society. In the contemporary world, this is not a linear process, but rather, a matrix of interactions. Societies, with support from public and private sectors and institutions, struggle to integrate the necessary disciplines and interests into this matrix. Within the scientific and engineering community, we need to better integrate different disciplines and voices into a consensus supporting innovation. Developed and developing countries that accomplish this will become the economies of the future.

At the same time, it is imperative that we work in ways that are transparent and open to a diversity of contributors and ideas. Assessing risk versus benefit in adopting an innovation is complex and depends upon an open dialogue. Only then will we realize the promise of furthering scientific discovery and innovation to meet pressing global challenges and improve quality of life.

Call for Poster Submissions

Online entries will be accepted at www.aaas.org/meetings beginning 14 May 2013.
Illuminate Cancer Biology

The complexity of cancer systems biology requires innovative tools for interrogating the signaling pathways responsible for oncological transformation. Promega’s integrated tools for reporter gene analysis assure biologically relevant results in cancer research.

FuGENE® HD
The next generation transfection reagent, effective on almost every cell type with virtually no cell toxicity.

ONE-Glo™ + Tox
Multiplexed reporter gene analysis with off-target toxicity detection in the same well.

New! NanoLuc™ and pGL4 Tox Vectors
Introducing NanoLuc - the brightest, smallest, luciferase available - plus a new line of pGL4 response element vectors for mapping oncological pathways.

To get a FREE sample of any one of these reagents, visit: www.promega.com/pathwaybiology