CONTENTS

The American Association for the Advancement of Science:

Recent Progress in Spectroscopic Methods:
Professor A. A. Michelson 893

The American Society of Naturalists:—
Heredity and Personality: Professor Herbert S. Jennings 902

Scientific Notes and News 910

University and Educational News 915

Discussion and Correspondence:—

The Positive Ion in Electrical Discharge through Gases: Professor F. E. Nipher.
A New Record of a Chestnut Tree Disease in Mississippi: Caroline Rumbold.
Blanding's Turtle: John J. Schoonhoven.
The Moth of the Cotton Worm: J. R. Watson.
Transplantation of Ovaries: Dr. C. C. Guthrie.
Moulting and Change of Color of Coat in Mice: Professor T. H. Morgan 917

Quotations:—

The Royal Society 919

Scientific Books:—

Voyage of the 'Why Not': General A. W. Greely.
Pullfrich's Stereoskopisches
Schen und Messen: Professor Joseph Jamieson.
Geerligs's Sugar Industry: Professor F. G. Wiegmann.
Cohen's Introduction to the Lie Theory of One-parameter Groups: Professor G. A. Miller 920

Special Articles:—

The Artificial Ripening of Persimmons: Professor Francis Ernest Lloyd.
Furnulius and Fresh Water: Professor Francis B. Sumner 924

Societies and Academies:—

The Botanical Society of Washington: Dr. W. W. Stockberger.
The Torrey Botanical Club: B. O. Dodge 931

MSS. intended for publication and books, etc., intended for review should be sent to the Editor of SCIENCE, Garrison-on-Hudson, N. Y.

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

RECENT PROGRESS IN SPECTROSCOPIC METHODS

An observer who for the first time views the light of the sun through a prism can not fail to express his wonder and delight at the gorgeous display of colors into which the white light is separated—and if the observation is made under the same conditions as in the celebrated experiment of Newton, 1666, there is in truth nothing else which he could observe. You will remember that he allowed a beam of sunlight to stream through a round opening in a shutter of his window, falling on a glass prism, which bent the sun rays through different amounts depending on their color, thus spreading out the white round sunlit spot on the opposite wall into a colored band—the spectrum—which he rather arbitrarily divided into seven colors—red, orange, yellow, green, blue, indigo and violet. (If the division were made to-day I doubt if indigo would be included.) There is in fact no definite demarcation between these, and they shade insensibly into each other—and if the solar spectrum were always produced under these conditions we should say it was continuous, indeed if it were not the sun but an argand burner or an incandescent lamp which served as source, it would really be so.

But even if the source consisted of isolated (but sufficiently numerous) separate colors, the fact would be disguised by the overlapping of the successive images. In other words the spectrum is not pure. In

1 Address of the president, Washington meeting, December, 1911.