Analysis of Surface Materials by the Curiosity Mars Rover

THE 6 AUGUST 2012 ARRIVAL OF THE CURIOSITY ROVER ON THE SURFACE of Mars delivered the most technically advanced geochemistry laboratory ever sent to the surface of another planet. Its 10 instruments (1)* were commissioned for operations and were tested on a diverse set of materials, including rocks, soils, and the atmosphere, during the first 100 martian days (sols) of the mission. The five articles presented in full in the online edition of Science (www.sciencemag.org/extra/curiosity), with abstracts in print (pp. 1476–1477), describe the mission’s initial results, in which Curiosity’s full laboratory capability was used.

Curiosity was sent to explore a site located in Gale crater, where a broad diversity of materials was observed from orbit. Materials representing interactions with aqueous environments were targeted for study because of the emphasis on understanding habitable environments. In addition, the mission's science objectives also include characterizing the geologic diversity of the landing site at all scales, including loose surface materials such as impact ejecta, soils, and windblown accumulations of fine sediments. In certain cases, such characterization may even provide constraints on the evolution of the planet as a whole. Two notable points along Curiosity’s initial 500-m traverse included Jake_M, a loose rock sitting on the plains, and Rocknest, an accumulation of windblown sand, silt, and dust that formed in the lee of some rocky outcrops. Sparse outcrops of lithified fluvial conglomerate were also encountered (2).

As described by Stolper et al., Jake_M was encountered ~282 m away from the landing site and is a dark, macroscopically homogeneous igneous rock representing a previously unknown martian magma type. In contrast to the relatively unfractured Fe-rich and Al-poor tholeiitic basalts typical of martian igneous rocks, it is highly alkaline and fractionated. No other known martian rock is as compositionally similar to terrestrial igneous rocks; Jake_M compares very closely with an uncommon terrestrial rock type known as a mugearite, typically found on ocean islands and in rift zones. It probably originates from magmas generated by low degrees of partial melting at high pressure of possibly water-rich, chemically altered martian mantle that is different from the sources of other known martian basalts.

Over the first 100 sols of the mission, the ChemCam instrument returned >10,000 laser-induced breakdown spectra, helping to characterize surface material diversity. ChemCam’s laser acts effectively as a microprobe, distinguishing between fine soil grains and coarser ~1-mm grains. Based on these data, Meslin et al. report that the coarse soil fraction contains felsic (Si- and Al-rich) grains, mimicking the composition of larger felsic rock fragments found during the traverse and showing that these larger components probably break apart to form part of the soil. In contrast, the fine-grained soil component is mafic, similar to soils observed by the Pathfinder and Mars Exploration Rover missions.

Curiosity scooped, processed, and analyzed a small deposit of windblown sand/silt/dust at Rocknest that has similar morphology and bulk elemental composition to other aeolian deposits studied at other Mars landing sites. Based solely on analysis of CheMin x-ray diffraction (XRD) data from Mars, calibrated with terrestrial standards, Bish et al. estimate the Rocknest deposit to be composed of ~71% crystalline material of basaltic origin, in addition to ~29% x-ray-amorphous materials. In an independent approach, Blake et al. used Alpha Particle X-ray Spectrometer data to constrain the bulk composition of the deposit and XRD data and phase stoichiometry to constrain the chemistry of the crystalline component, with the difference being attributed to the amorphous component, resulting in estimates of ~55% crystalline material of basaltic origin and ~45% x-ray-amorphous materials. The amorphous component may contain nanophase iron oxide similar to what was observed by earlier rovers. The similarity between basaltic soils observed at Rocknest and other Mars sites implies either global-scale mixing of basaltic material or similar regional-scale basaltic source material or some combination of both. No hydrated phases were detected. However, as shown by Leshin et al., pyrolysis of Rocknest fines using the Sample Analysis at Mars (SAM) instrument suite revealed volatile species, probably in the amorphous component, including H₂O, SO₃, CO₂, and O₂, in order of decreasing abundance. ChemCam measurements of these materials also revealed the presence of H. It is likely that H₂O is contained in the amorphous component and CO₂ was liberated via the decomposition of Fe/Mg carbonates present below the XRD detection limit of 1 to 2%. Isotopic data from SAM indicate that this H₂O, and possibly the CO₂, were derived from the atmosphere. SAM analysis also revealed oxychloride compounds similar to those found by earlier missions, suggesting that their accumulation reflects global planetary processes. The evolution of CO₂ during pyrolysis and the observation of simple chlorohydrocarbons during SAM gas chromatograph mass spectrometer analyses could be consistent with organic carbon derived from a terrestrial instrument background source, or a martian source, either exogenous or indigenous. — JOHN P. GROTZINGER

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

*References may be found on page 1477 after the abstracts.
10.1126/science.1244258
Curiosity at Gale Crater

ABSTRACTS

The Petrochemistry of Jake_M: A Martian Mugearite


*Corresponding author. E-mail: ems@gps.caltech.edu
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
†MSL Science Team authors and affiliations are listed in the supplementary materials.

The list of author affiliations is available in the full article online.

“Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkali or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).

The list of author affiliations is available in the full article online.

>> Read the full article at http://dx.doi.org/10.1126/science.1239463

X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater


*Corresponding author. E-mail: bish@indiana.edu
Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA.
†MSL Science Team authors and affiliations are listed in the supplementary materials.

The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and ilmenite. The minor phases include mafic soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. CheMin analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

The list of author affiliations is available in the full article online.

>> Read the full article at http://dx.doi.org/10.1126/science.1238670

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars


*Corresponding author. E-mail: pmeslin@irap.omp.eu
Université de Toulouse, UPS-OMP, IRAP, 31028 Toulouse, France.
CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France.
†MSL Science Team authors and affiliations are listed in the supplementary materials.

The list of author affiliations is available in the full article online.

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

The list of author affiliations is available in the full article online.

>> Read the full article at http://dx.doi.org/10.1126/science.1239463
ponent is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

>> Read the full article at http://dx.doi.org/10.1126/science.1238932

Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover


*Corresponding author. E-mail: leshin@rpi.edu
Department of Earth and Environmental Sciences and School of Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
†MSL Science Team authors and affiliations are listed in the supplementary materials.
The list of author affiliations is available in the full article online.

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H₂O, SO₂, CO₂, and O₂ were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H₂O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO₂. Evolved O₂ is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

>> Read the full article at http://dx.doi.org/10.1126/science.1238937

References

See all of Science’s Curiosity coverage, including news, research, and multimedia, at www.sciencemag.org/extra/curiosity