The genetic prehistory of the New World Arctic

INTRODUCTION: Humans first peopled the North American Arctic (northern Alaska, Canada, and Greenland) around 6000 years ago, leaving behind a complex archaeological record that consisted of different cultural units and distinct ways of life, including the Early Paleo-Eskimos (Pre-Dorset/Saqqaaq), the Late Paleo-Eskimos (Early Dorset, Middle Dorset, and Late Dorset), and the Thule cultures.

RATIONALE: We addressed the genetic origins and relationships of the various New World Arctic cultures to each other and to modern-day populations in the region. We obtained 26 genome-wide sequences and 169 mitochondrial DNA sequences from ancient human bone, teeth, and hair samples from Arctic Siberia, Alaska, Canada, and Greenland, and high-coverages genomes of two present-day Greenlandic Inuit, two Siberian Nivkhs, one Aleutian Islander, and two Athabascan Native Americans. Twenty-seven ancient samples were radiocarbon dated for accurate cultural assignment, of which 25 were corrected for marine reservoir effect to account for the dominant marine component in these individuals’ diets.

RESULTS: Nuclear and mitochondrial DNA data unequivocally show that the Paleo-Eskimos are closer to each other than to any other present-day population. The Thule culture represents a distinct people that are genetic and cultural ancestors of modern Inuit. We additionally find the Siberian Birnirk culture (6th to 7th century CE) as likely cultural and genetic ancestors of the Thule. The extinct Sadlermiut people from the Hudson Bay region (15th to 19th century CE), considered to be Dorset remnants, are genetically closely related to Thule/Inuit, rather than the Paleo-Eskimos. Moreover, there is no evidence of matrilineal gene flow between Dorset or Thule groups with neighboring Norse (Vikings) populations settling in the Arctic around 1000 years ago. However, we do detect gene flow between the Paleo-Eskimo and Neo-Eskimo lineages, dating back to at least 4000 years.

CONCLUSION: Our study has a number of important implications: Paleo-Eskimos likely represent a single migration pulse into the Americas from Siberia, separate from the ones giving rise to the Inuit and other Native Americans, including Athabascan speakers. Paleo-Eskimos, despite showing cultural differences across time and space, constituted a single population displaying genetic continuity for more than 4000 years. On the contrary, the Thule people, ancestors of contemporary Inuit, represent a population replacement of the Paleo-Eskimos that occurred less than 700 years ago. The long-term genetic continuity of the Paleo-Eskimo gene pool and lack of evidence of Native American admixture suggest that the Saqqaq and Dorset people were largely living in genetic isolation after entering the New World. Thus, the Paleo-Eskimo technological innovations and changes through time, as evident from the archaeological record, seem to have occurred solely by movement of ideas within a single resident population. This suggests that cultural similarities and differences are not solid proxies for population movements and migrations into new and dramatically different environments, as is often assumed.

Genetic origins of Paleo-Eskimos and Neo-Eskimos. All Paleo-Eskimos represent a single migration pulse from Siberia into the Americas, independent of the Neo-Eskimo Thule people (ancestors of modern-day Inuit) and the related extinct Sadlermiut population. The Siberian Birnirk people were likely cultural and genetic ancestors of modern-day Inuit. We also show ancient admixture between the Paleo- and Neo-Eskimo lineages, occurring at least 4000 years ago.

Published by AAAS
The genetic prehistory of the New World Arctic

Maanasa Raghavan,1 Michael DeGiorgio,2 Anders Albrechtsen,3,4 Ida Moltke,3,4,
Pontus Skoglund,5,6 Thorfinn S. Korneliusen,7 Bjarne Gørennow,7 Martin Appelt,7
Hans Christian Gulløv,7 T. Max Friese,7 William Fitzhugh,9 Helena Malmström,1,8
Simon Rasmussen,10 Jesper Olsen,11 Linea Melchior,12 Benjamin T. Fuller,13
Simon M. Fahnh,13 Thomas Stafford Jr,1,14 Vaughan Grimes,14,15 M. A. Priscilla Renouf,14,
Jerome Cylbushki,16,17 Niels Lynnerup,12 Marta Mirazon Lahr,18 Kate Britton,18,19
Rick Knecht,19 Jette Arneborg,20,21 Mait Metspalu,22,23 Omar E. Cornejo,24,25
Anna-Sapfo Malaspinas,1 Yong Wang,26,27 Morten Rasmussen,1 Vibha Raghavan,28
Thomas V. O. Hansen,29 Elza Khusnutdinova,30,31 Tracey Pierre,1 Kiriil Dneprovsky,32
Claus Andreassen,33 Hans Lange,33 M. Geoffrey Hayes,34,35,36 Joan Coltrain,37
Victor A. Spitsyn,38 Anders Götherström,39 Ludovic Orlando,1,100 Thomas Kivisild,22,40
Richard Villems,22,23 Michael H. Crawford,41 Finn C. Nielsen,29 Jørgen Dissing,12
Jan Heinemeier,34 Morten Meldgaard,34 Carlos Bustamante,24 Dennis H. O’Rourke,37
Mattias Jakobsson,38 M. Thomas P. Gilbert,1 Rasmus Nielsen,24 Eke Willerslev1

The New World Arctic, the last region of the Americas to be populated by humans, has relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans lacking. We present genome-wide sequence data from ancient and present-day humans

humans first peopled the North American Arctic (northern Alaska, Canada, and Greenland) from the Bering Strait region beginning around 6000 years before the present (1), leaving behind a complex archaeological record (supplementary text S1 (2) and Fig. 1). Over successive millennia, the pioneering Arctic cultures developed into distinct lifestyles and cultural stages grouped within two broad cultural traditions known as Paleo-Eskimo and Neo-Eskimo. Early Paleo-Eskimo people representing the Denbigh, Pre-Dorset, Independence I, and Sag复古 cultures (~3000 to 800 BCE) lived in tent camps and hunted caribou, musk ox, and seals with exquisitely flaked stone tools similar to those used by northeast Siberian Neolithic cultures (3–6). In northern Alaska, the Denbigh cultural groups were succeeded by the Paleo-Eskimo Choris and Norton cultures starting around 900 BCE, with the Norton material culture further developing into the Ipiutak culture around 200 CE (6, 7). Simultaneously, during the cold period beginning around 800 BCE, innovations in housing and hunting technologies accompanied the formation of the Late Paleo-Eskimo or Dorset culture in eastern Arctic (eastern Canadian Arctic and Greenland), with population growth

and more intensive use of marine mammals, including walruses (8, 9). The Dorset culture is divided into three phases: (i) Early Dorset, ~800 BCE to 0 BCE/CE; (ii) Middle Dorset, ~0 BCE/CE to 600 to 800 CE; and (iii) Late Dorset ~600 to 800 CE to 1300 CE (9). The Paleo-Eskimo tradition in the eastern Arctic ended sometime between 1550 to 1350 CE, shortly after the sudden appearance of the Neo-Eskimo Thule whale-hunters from the Bering Strait region (~9–17).

The Siberian Old Bering Sea culture is the earliest expression of the Neo-Eskimo tradition ~2200 years before the present, developing into the Punuk culture around the sixth century CE. Almost concurrently, the Old Bering Sea culture developed into the Birnirk culture in the northern parts of the Bering Strait region. Interactions between people of the Birnirk and Punuk cultures gave rise to the western Thule culture on both sides of the Bering Strait, with contribution from the Paleo-Eskimo Ipiutak culture in Alaska (18). By the early second millennium CE, western Thule cultural groups began their movement into the eastern North American Arctic (14, 19). With the Thule culture came more effective means of transportation like dog sleds and large skin boats, complex tool kits like sinew-backed bows, and harpoon float gear for hunting large whales (JO, 20). Thule culture spread quickly throughout the eastern Arctic, rapidly replacing Dorset in most, if not all, regions. The decline of whaling during the latter part of the Little Ice Age (16th to 19th century CE) resulted in a readjustment to ice-edge hunting of walrus and breathing-hole

1Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark. 2Department of Biology, Pennsylvania State University, 202 Wurk Laboratory, University Park, PA 16802, USA. 3Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaleo Vej 5, 2200 Copenhagen, Denmark. 4Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 5Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden. 6Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. 7Arctic Centre at the Ethnographic Collections (SILA), National Museum of Denmark, Frederiksholms Kanal 12, 1200 Copenhagen, Denmark. 8Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2C2, Canada. 9 Arctic Studies Center, Post Office Box 37012, Department of Anthropology, MRC 112, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560–7102, USA. 10Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemtowtr, 2800 Kongens Lyngby, Denmark. 11AMS IAC Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark. 12Anthropological Laboratory, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V’s Vej 11, 2100 Copenhagen, Denmark. 13Department of Earth System Science, University of California, Irvine, CA 92697, USA. 14Department of Anthropology, Memorial University, Queen’s College, 210 Prince Philip Drive, St. John’s, Newfoundland, A1C 5S7, Canada. 15Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. 16Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec, K1A 0B8, Canada. 17Department of Anthropology, University of Western Ontario, 511 Richmond Street North, London N6A 5C2, Canada. 18Lehreium Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK. 19Department of Archaeology, University of Aberdeen, St. Mary’s Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK. 20National Museum of Denmark, Frederiksholms Kanal 12, 1200 Copenhagen, Denmark. 21School of Geosciences, University of Edinburgh, Edinburgh EH9 3BK, UK. 22Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. 23Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia. 24Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA. 25School of Biological Sciences, Washington State University, Post Office Box 644256, Pullman, WA 99164, USA. 26Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. 27Ancestry.com DNA LLC, San Francisco, CA 94107, USA. 28Informatics and Bio-computing, Ontario Institute for Cancer Research, 665 University Avenue, Suite 503, Toronto, Ontario, M5G 0A3, Canada. 29Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark. 30Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia. 31Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan 450004, Russia. 32State Museum for Oriental Art, 12a, Nikitsky Boulevard, Moscow 119393, Russia. 33Greenland National Museum and Archives, Post Office Box 145, 3900 Nuuk, Greenland. 34Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. 35Department of Anthropology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA. 36Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. 37Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA. 38Research Centre for Medical Genetics of Russian Academy of Medical Sciences, 1 Moskovoretskoye, Moscow 115578, Russia. 39Department of Archaeology and Anthropology, Stockholm University, Stockholm, Sweden. 40Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK. 41Laboratory of Biological Anthropology, University of Kansas, Lawrence, KS 66045, USA. 42These authors contributed equally to this work. †Deceased. *Corresponding author. E-mail: ewillerslev@smm.ku.dk
hunting of seal, laying the foundation for modern Inuit cultures (21). Additionally, the Norse (Vikings) formed settlements in Greenland around 985 CE and occupied regions in southern Greenland for about 500 years, contemporaneous with both the Late Dorset and Thule, reaching Newfoundland and Labrador in eastern Canada around 1000 CE (22).

Continuities in chipped stone bifaces and blade and burin technology point to Paleo-Eskimo origins among Siberian Neolithic cultures (6, 9, 37, 40, 83–85). Genetic evidence suggests that the earliest eastern Arctic Paleo-Eskimo people represented an independent Siberian migration into the New World (25, 26) (Fig. 2B, scenario 1). However, to date, we have been unable to identify the likely Siberian ancestral population. Some have argued for origins from an ill-defined 8000-year-old South Alaskan Eskimo-Aleut or Na Dene blade and burin complex (27), but this remains controversial. A recent genetic study provides evidence in support of the Early Paleo-Eskimos, specifically Saqqaq, sharing ancestry with Na Dene Native Americans (Fig. 2B, scenario 2), as part of a three-wave peopling model of the Americas consisting of (i) First Americans, (ii) Eskimo-Aleuts and, (iii) Saqqaq and Na Dene speakers (28). Alternative hypotheses on Dorset origins include the Aleutian Islanders (29) (Fig. 2B, scenario 3) and earlier theories of Amerindian cultures in eastern Canada and even further south (30–33) (Fig. 2B, scenario 4). Current views favor an in situ origin of Dorset from Canadian Pre-Dorset in northern Hudson Bay (10, 13, 34, 35).

Additionally, whether the individual Early, Middle, and Late Dorset phases represent genetic continuity of the same peoples or not remains unresolved (Fig. 2A). The Dorset chronological sequence from the T1 site on Southampton Island, Igloolik, South Baffin, and Labrador in Canada provide evidence of cultural continuity through Early to Late Dorset (30, 30, 36), although regional differences and settlement discontinuities are also common (37–41). Notable regional discontinuities and occupation gaps also occur in Greenland (9). It is also debated whether abandoned areas were reoccupied by people from a different genetic background and whether this occurred from a Central Arctic ecological “core area” or regional “core areas” into which human populations retreated and restructured before expanding again into periodically refurbished marginal zones (20, 34). The resolution of these controversies has been hindered by the limited...
amount of Paleo-Eskimo human material, difficulties in assigning cultural affiliation of some finds (41), and dating uncertainties resulting from the strong marine component in the Arctic diet (9).

Samples and sequence data

We collected bone, teeth, and hair samples from the field and museums representing 169 ancient human remains from Arctic Siberia, Alaska, Canada, and Greenland (fig. S1 and table S1). These remains have been assigned to one of several ancient Arctic cultures on the basis of typological and/or stratigraphic evidence and, in some cases, radiocarbon dating (supplementary text S1). To circumvent drawing conclusions from single genotypes (42), we generated mitochondrial DNA (mtDNA) data from 154 and low-coverage whole genome data sets from 26 of the ancient samples (up to 0.3× depth) (supplementary text S3 and tables S1 and S7). Despite colder temperatures in the Arctic, DNA survival in the ancient samples was surprisingly low, ranging from ~0 to 3.2% endogenous content based on the genome sequencing data (table S7). This low endogenous content may be explained by the remains being largely surface burials that suffered from fluctuating temperatures and humidity, and to subsequent storage conditions at museums.

We also sequenced two high-coverage genotypes from present-day North American Native Americans belonging to the Na Dene family (the Dakelh of British Columbia, hereafter referred to as Athabascans) and unrelated, present-day Greenlandic Inuit (n = 2), Aleutian Islander (n = 1) and Siberian Nivkhs (n = 2) to average depths of 20 to 40× (supplementary text S3 and table S8). Only the Aleutian Islander showed evidence of recent European admixture and was masked for non-Native American ancestry tracts prior to analyses (supplementary text S5). Additionally, we radiocarbon dated 27 ancient samples and corrected 25 of the dates for marine reservoir effect to account for the dominant marine component in these individuals’ diets (15 of these samples are represented in the ancient genomic data set) (supplementary text S2). This is critical in the accurate cultural assignment of these individuals, especially in cases where stratigraphic information is inconclusive or contentious (supplementary text S1).

Origins of Paleo-Eskimos

Diagnostic mtDNA coding region markers were targeted in the ancient samples to determine their mtDNA haplogroup (hg) affinities. Although hgs A, B, C, D, and X are the five founding mtDNA haplogroups in the Americas,
previous studies have shown the near-absence of hgs B, C, and X in Paleo-Eskimo and Thule, as well as among present-day Inuit (25, 43–47). We observe mtDNA hg D, specifically the lineage hg D2a, in both Early and Late Paleo-Eskimos, with the majority of the Pre-Dorset/Saqqaq and Middle Dorset samples further classified as hg D2a1 (supplementary text S4 and tables S1 and S9A). The absence of biological remains affiliated to the Early Dorset phase precludes genetic testing for this period. Hgs D2a and D2a1 are found in present-day Aleutian Islanders and Siberian Eskimos (48), who are genetically among the closest living populations to the previously sequenced Greenlandic Paleo-Eskimo (Saqqaq) individual that also belonged to hg D2a1 (hereafter, high-coverage Saqqaq) (26).

Maximum likelihood trees based on nuclear DNA variation place the Middle Dorset, Late Dorset, and the Canadian Pre-Dorset individuals as sister groups to the high-coverage Saqqaq individual (Fig. 3A and fig. S8, B to D), separately from contemporary Greenlandic Inuit or Native Americans [represented by the South American Karitiana (49) and the ancient Clovis Anzick-1 individual (50)]. Similar results were obtained when allowing for admixture between populations with TreeMix (51) (fig. S8, B to D). When the analysis was repeated and included the Alevan Islander, which was masked for European ancestry over ~80% of its genome (supplementary text S5), the Middle Dorset and the Late Dorset individuals grouped with the high-coverage Saqqaq, as before (fig. S9).

Pairwise outgroup f_2-statistics (52, 53) and D-statistics (52, 54) confirm Early and Late Paleo-Eskimos as being significantly [no overlap at three standard errors for the single-nucleotide polymorphism (SNP) chip data and at 1 standard error for the sequencing data] closer to Saqqaq than to the sampled present-day populations. These results suggest that all Paleo-Eskimos, from both Canada and Greenland, represent a
continuum of the same single ancestral population (Fig. 2, A and B, scenario 1). Present-day populations that are genetically closely related to the Paleo-Eskimos include the Greenlandic Inuit, Aleutian Islanders, and far-east Siberians (Fig. 3C and fig. S10E).

We additionally tested the claim that Saqqaq and Na Dene speakers were part of the same expansion into the Americas (28) by including present-day Athabascans, who represent distinct early branches of Native Americans (50), in the TreeMix (51) analysis. The maximum likelihood tree places the Athabascans as a sister clade to Karitiana and Anzick-1 (fig. S11A). Similarly, using SNP chip data-based D-statistic tests of the form D(Yoruba, Thule; X, West Greenlander), as in Fig. 3, Canadian and Greenlandic Thule (left and right panels, respectively) are significantly (no overlap at 3 standard errors) closer to present-day West Greenlandic Inuit than to other worldwide present-day populations. Similar results are observed with East Greenlandic Inuit in place of West Greenlandic Inuit (fig. S14C). (C) Heat maps of the SNP chip data-based statistic f3(Yoruba; Thule, X), as in Fig. 3.

Genetic affiliations of Neo-Eskimos

Greenlandic and Canadian Neo-Eskimo Thule, and present-day Greenlandic Inuit, form a clade in the maximum likelihood trees (Fig. 4A), even under admixture scenarios generated with TreeMix (51) (fig. S13, A and B). This supports genetic continuity over the last ~1000 years between these populations, which is also evident by the shared mtDNA haplogroups (hgs A2a, A2b, and D3a2a) between them (supplementary text S4 and tables S1 and S9A). Furthermore, outgroup f3-statistics (52, 53) and D-statistics (52, 54) demonstrate that both Greenlandic and Canadian Thule are closer to present-day Inuit than to other sampled present-day populations or the high-coverage Saqqaq individual (Fig. 4, B and C, and fig. S14, A to C). These results are in agreement with the archaeological literature which suggests that present-day Greenlandic Inuit are direct descendants of the Thule (9, 56–58) (Fig. 2B, scenario 5).

We additionally analyzed five ancient individuals dated to the 6th to 7th century CE and associated with the Siberian Birnirk culture, which is part of the Neo-Eskimo tradition and may be one of the cultural ancestors of the Thule (59–61). Evidence from both mitochondrial typing (hg A2a) (tables S1 and S9A) and nuclear markers (fig. S15, A to D) reveals that these individuals are genetically closely related to present-day Greenlandic...
Inuit, providing the first genetic evidence of an Old World population that was not only a cultural precursor of the Thule, but also either closely related to or a component of the ancestral Inuit gene pool (Fig. 2B, scenario 6). We also reassessed claims that the Sadlermuit population from Southampton Island in the Hudson Bay region are remnants of the Dorset Paleo-Eskimo people on the basis of cultural similarities and mtDNA markers (33, 46, 62) (Fig. 2B, scenario 7). We typed 10 Sadlermiut individuals, dating to the 14th to 19th century CE, to mtDNA hgs A2b and D3a2a (supplementary text S4 and tables S1 and S9A), which are characteristic of the Thule/Inuit. Also, from their nuclear genome sequences, two of these...
individuals (Canadian Thule) form a cline with present-day Greenlandic Inuit and not the high-coverage Saqqaq individual (Fig. 4A and fig. S13A). This implies that the Sadlermiut were either genetically derived from or closely related to the Thule rather than the Paleo-Eskimos (Fig. 2B, scenario 8).

Additionally, whether the Norse admixed with neighboring Dorset or Thule groups remains debated, even though no anthropological evidence supporting such admixture has been found (63). To address this hypothesis, we tested 34 Norse individuals from southern Greenland, across the time span of their occupation in the region, for mitochondrial admixture with neighboring Paleo- and Neo-Eskimo populations (supplementary text S1). We found no New World–specific mitochondrial markers in these Norse samples, especially the Arctic-specific hgs A and D, suggesting that no detectable mitochondrial gene flow occurred from the Dorset or Thule into the sampled Greenlandic Norse (supplementary text S4 and table S9, B and C).

Admixture signals in Paleo- and Neo-Eskimos

We further investigated the observed genetic affinity between present-day Greenlandic Inuit and Paleo-Eskimos. D-statistics (52, 54) and outgroup f$_T$-statistics (52, 53) support the Paleo-Eskimos as being closer to Greenlandic Inuit than to other present-day New World populations (figs. S12A and S16, A and B), with the exception of the Aleutian Islanders, whose genetic proximity to the Inuit is evident in analyses from both sequencing data (fig. S9) and SNP chip data (28) and the Naukan who have been shown to possess Eskimo-Aleut ancestry as a result of back-migration of a related population (28). Maximum likelihood trees with migration edges inferred with TreeMix show evidence for admixture between Paleo-Eskimos and Greenlandic Inuit (Fig. 5A), mediated by the Neo-Eskimo groups that include the Canadian Thule, Greenlandic Thule, and Siberian Birnirk (figs. S8, A and C to D; S13, A and B; and S15A). In all the cases, this gene flow event is among the first few migration edges to be inferred by TreeMix (number of migration edges n = 1 to 4). Bootstrap support suggests that gene flow likely occurred in both directions between the Paleo- and Neo-Eskimo groups (table S12).

Although gene flow was also observed when the high-coverage Saqqaq individual was included, we sought to determine whether this was due to TreeMix being unable to distinguish between Saqqaq and Dorset as a result of their genetic similarity and if admixture might have actually occurred between Dorset and Neo-Eskimos. Therefore, we generated simulated data sets with varying levels of admixture (10 and 25%) between Dorset and Inuit in both directions, and determined whether a migration edge was observed in the TreeMix admixture graphs between the high-coverage Saqqaq individual and the Inuit in the absence of the Dorset (supplementary text S5). Simulated admixture from Dorset to Inuit was detected by the analysis in the form of gene flow between Saqqaq and Inuit, but the reverse—that is, from Inuit to Dorset through gene flow involving Saqqaq and Inuit—was less likely (fig. S17, A and B, and table S13). Because our data show support for gene flow from the various Neo-Eskimo groups, including present-day Inuit, into the high-coverage Saqqaq individual, it is likely that the admixture involving Saqqaq is not an artifact and occurred from the Neo-Eskimo lineage into Saqqaq. We cannot, however, exclude the possibility of gene flow from Paleo-Eskimos into Neo-Eskimos as well, or that subsequent gene flow did not occur between the later Dorset phases and the Neo-Eskimo lineage (table S13).

Because the observed admixture involves the 4000-year-old Saqqaq individual, it implies that the meeting and intermixing of Paleo-Eskimo and Neo-Eskimo ancestors predates the first archaeological observations of their coexistence in the eastern Arctic by ~3000 years or earlier, since Thule groups entered eastern Canada and Greenland, previously occupied by the Late Dorset, only in the 12th or 13th century CE. This also suggests that the admixture is more likely to have occurred either in the Old World before the entry of the Neo-Eskimos into the Americas, or in Beringia, but not further east in the New World, because no archaeological evidence of a parallel existence of Paleo- and Neo-Eskimos around 4000 years ago or earlier has been documented in this region (Fig. 2B, scenario 9).

We also investigated the level of genetic contribution from the ~24,000-year-old Siberian boy from Mal’ta (MA-1) (53) into Paleo-Eskimos and Greenlandic Inuit. Pairwise outgroup f$_T$-statistics (52, 53) show that sampled western Eurasians and MA-1 are slightly closer to the high-coverage Saqqaq than to the Han Chinese (Fig. 5B and fig. S18). To confirm that this genetic affinity between Saqqaq and MA-1 was not due to ancient DNA bias, we also included the ~7000-year-old La Braña 1 sample from Spain (64) in our analysis and found that it clustered close to present-day Europeans, hence confirming that our results were not skewed by ancient DNA attraction (Fig. 5B). TreeMix infers gene flow from the high-coverage Saqqaq into MA-1 and vice versa, the latter admixture edge being consistent with (65), but with low support to substantiate this signal and the inferred direction (Fig. 5C, table S13, and supplementary text S5).

In contrast, gene flow from MA-1 into the root of the clad comprising Native American populations (Karitiana and Anzick-1) and including the Greenlandic Inuit is detected with high bootstrap support, in agreement with (53) (Fig. 2B, scenario 10; Fig. 5C; and table S13). Additionally, D-statistics (52) and outgroup f$_T$-statistics (52, 53) based on SNP chip data show that MA-1 is significantly (no overlap at 3 standard errors) closer to the Chipewyan than to the high-coverage Saqqaq (fig. S19), which is compatible with other results presented in this study that also reject a single-wave model for Saqqaq and Na Dene speakers. Overall, although there is evidence of genetic affinity between MA-1 and Saqqaq, we cannot ascertain whether this is due to gene flow or shared ancestry between the two lineages. It is also possible that this affinity is a consequence of the aforementioned gene flow from Neo-Eskimos, who received MA-1 gene flow, into the Saqqaq lineage.

Discussion

We overcome the difficulties of studying the peopling of the Arctic by including an extensive collection of Paleo-Eskimo remains for both ancient DNA and radiocarbon analyses. We have shown that Paleo-Eskimos likely represent a single migration pulse into North America from Siberia; separate from the migration events giving rise to Native Americans and Inuit. However, while being genetically distinct from other New World populations, Paleo-Eskimos are still more closely related to these populations than to non–New World populations, which is in agreement with a single ancestral population giving rise to many subpopulations and possibly many migration pulses into the Americas, as suggested by the Beringian standstill model (66) and a three-stage colonization model (67). Moreover, although our data are in agreement with Reich et al. (28), we find no support for Saqqaq or the rest of the Paleo-Eskimo tradition being a part of one of the two waves of Native American ancestors entering the more southern regions of the Americas. Therefore, an additional Paleo-Eskimo migration wave should be added to the three-wave hypothesis in explaining the peopling of the Americas (28).

Furthermore, Paleo-Eskimo and Inuit peoples appear to have occupied the New World Arctic for more than 4000 years, with only a single population replacement (Thule) less than 700 years ago. In contrast with the dynamic responses of the Thule people to climate change (21, 68, 69), Siberian iron trade (70), and Norse contact (16), the 4000-year Paleo-Eskimo period presents a single tradition of continuous technological and social development, including geographical dislocations and periods of relative stability punctuated by episodes of rapid change (20). The long-term continuity of the Paleo-Eskimo population and its culture is especially striking given the climatic and ecological cycles over 4000 years—from warm hypsithermal to cold sub-boreal through the early medieval warm event, as well as changes in sea ice distribution and in animal population cycles and distribution (17). In light of this, Paleo-Eskimo survival must be due to remarkable social resilience among dispersed local groups with the ability to shift their small population units to new areas when their homes became untenable, like the complete depopulation of Greenland and the abandonment of the Canadian High Arctic between ~1 to 700 CE (9). Such events argue for the reformulation of the original “core area” hypothesis to a network of regional “core areas” that served as demographic reservoirs for repopulating areas abandoned as a result of climate change, animal population crashes, or human overhunting.

This study also contributes to the long-standing debate about the Dorset-Thule transition. New
series of radiocarbon dates suggest temporal overlap between the Dorset and the Thule that lasted between 50 and 200 years, with geographical coexistence in some areas (14, 16, 71–75), whereas an earlier reassessment of the eastern Arctic radiocarbon dates suggested that Dorset had disappeared from the eastern Arctic more than 200 years prior to Thule entering the eastern Arctic and thus the two groups never met (12, 76). Although we cannot preclude later gene flow between the Dorset and the Thule (that is, subsequent to the more ancient gene flow that occurred at least 4000 years ago), the contrasting genetic and cultural affinities of the Sadlermiut individuals present a conundrum. This culture that lasted in 1903 CE from European disease has long been considered Thule-acculturated Dorset people, likely due to intermarriage (31, 77, 78); however, genetic evidence from this study suggests that they were Thule people who somehow acquired Dorset stone technology (12, 79). Hence, if the acculturation evident among the Sadlermiut was not a result of intermarriage, what social mechanisms resulted in genetic isolation but allowed for cultural exchange? Similar questions can be raised with regard to lack of Thule or Dorset matrilineal gene flow with the Greenlandic Norse (75).

Our study contrasts with previous population-genetic studies, as those focusing on the introduction of agriculture in Europe (Neolithization), which found that population movements instigated changes in culture and subsistence strategies (65, 80–82). Paleo-Eskimo technological innovations seem to have occurred solely by the movement of ideas within a single resident population. Hence, our findings suggest that caution is required when using cultural similarities and differences as proxies for population movements and migrations into new and dramatically different environments.

Methods

DNA from 169 ancient human bone, teeth, and hair samples from Arctic Siberia, Alaska, Canada, and Greenland was extracted and targeted for haplogroup diagnostic mtDNA markers, while a subset of 26 samples was converted into Illumina libraries and sequenced, using standard laboratory procedures (supplementary text S3). Twenty-present Greenlandic Inuit, two Nivkhs, one Aleutian Islander, and two Athabascans were genome sequenced with no objections from The National Committee on Health Research Ethics, Denmark (H-3-2012-FSP21) (supplementary text S2). Twenty-seven ancient samples were radiocarbon dated, of which 25 dates were corrected for marine reservoir offset (supplementary text S2). Mitochondrial DNA contamination estimates were computed as noted in supplementary text S4. Error rate analysis, DNA damage analysis, multidimensional scaling on SNP chip and sequencing data, NGSadmix analysis, ABBAbABA tests on sequencing data, D-statistics and f2-statistics tests on SNP chip and sequencing data, TreeMix analysis on SNP chip and sequencing data, neighbor-joining analysis, and ancestry painting of the Aleutian genome were performed as described in supplementary text S5.

REFERENCES AND NOTES

2. Supplementary materials are available on Science Online.
18. R. McGhee, Ancient People of the Arctic (Univ. of British Columbia Press, Vancouver, 1996).
19. J. M. V. Sadlermiut was not a result of intermarriage, what social mechanisms resulted in genetic isolation but allowed for cultural exchange? Similar questions can be raised with regard to lack of Thule or Dorset matrilineal gene flow with the Greenlandic Norse (75).

Our study contrasts with previous population-genetic studies, as those focusing on the introduction of agriculture in Europe (Neolithization), which found that population movements instigated changes in culture and subsistence strategies (65, 80–82). Paleo-Eskimo technological innovations seem to have occurred solely by the movement of ideas within a single resident population. Hence, our findings suggest that caution is required when using cultural similarities and differences as proxies for population movements and migrations into new and dramatically different environments.

Methods

DNA from 169 ancient human bone, teeth, and hair samples from Arctic Siberia, Alaska, Canada, and Greenland was extracted and targeted for haplogroup diagnostic mtDNA markers, while a subset of 26 samples was converted into Illumina libraries and sequenced, using standard laboratory procedures (supplementary text S3). Twenty-present Greenlandic Inuit, two Nivkhs, one Aleutian Islander, and two Athabascans were genome sequenced with no objections from The National Committee on Health Research Ethics, Denmark (H-3-2012-FSP21) (supplementary text S2). Twenty-seven ancient samples were radiocarbon dated, of which 25 dates were corrected for marine reservoir offset (supplementary text S2). Mitochondrial DNA contamination estimates were computed as noted in supplementary text S4. Error rate analysis, DNA damage analysis, multidimensional scaling on SNP chip and sequencing data, NGSadmix analysis, ABBAbABA tests on sequencing data, D-statistics and f2-statistics tests on SNP chip and sequencing data, TreeMix analysis on SNP chip and sequencing data, neighbor-joining analysis, and ancestry painting of the Aleutian genome were performed as described in supplementary text S5.

77. F. de Laguna, The Prehistory of Northern North America As Seen from the Yukon. (Society for American Archaeology, Menasha, WI, 1947).

ACKNOWLEDGMENTS

We thank the Danish National Sequencing Centre, T. B. Brand, and P. S. Olsen for technical assistance; anonymous donors for Illumina genotype data through Gene Expression Omnibus (GEO) series accession no. GSE55945 and at www.ncbi.nlm.nih.gov/geo. The data for the modern populations are available for download through European Nucleotide Archive (ENA) accession no. PRJEB6516, and for the illumina genotypedata through Gene Expression Omnibus (GEO) series accession no. GSE59545 and at www.ebi.ac.uk/free_data. Alignment files (BAMs) for the ancient genomes sequenced in this study are available at www.cbs.dtu.dk/suppl/arctic. The data for the modern populations are available for demographic research under data access agreement with E.W. The Thule samples from Siliumit, Kamivak, and Sadormit were made available by D.H.O.R. under agreement with the Canadian Museum of Civilization and local communities who provided research access to the samples. C.B. is on the advisory board of a project at 23andMe and on the scientific advisory boards of Personalis Inc.; Invitae; Etalon Inc.; and Ancestry.com. The authors declare no competing financial interests.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/345/6200/1255832/suppl/DC1

Supplementary Text S1 to S5
Figs. S1 to S22
Tables S1 to S13
References (86–221)

9 May 2014; accepted 29 July 2014
10.1126/science.1255832
The genetic prehistory of the New World Arctic

Science 345 (6200), 1255832
DOI: 10.1126/science.1255832

Arctic genetics comes in from the cold

Despite a well-characterized archaeological record, the genetics of the people who inhabit the Arctic have been unexplored. Raghavan et al. sequenced ancient and modern genomes of individuals from the North American Arctic (see the Perspective by Park). Analyses of these genomes indicate that the Arctic was colonized 6000 years ago by a migration separate from the one that gave rise to other Native American populations. Furthermore, the original paleo-inhabitants of the Arctic appear to have been completely replaced approximately 700 years ago. Science, this issue 10.1126/science.1255832; see also p. 1004