How to transform the practice of engineering to meet global health needs

Deb Niemeier,1 Harry Gombachika,2 Rebecca Richards-Kortum3,4

References and Notes

Acknowledgments

The authors alone are responsible for the views expressed in this article, and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated. The authors thank T. Seimon, L. Gonsalves, T. Tamrat, L. Say, S. Vanderpoel, N. Tran, V. Chandra-Mouli, C. Bailey, and the anonymous reviewers. G.M. acknowledges support from the Bill and Melinda Gates Foundation, the United Nations Foundation, the Wellcome Trust, and the Norwegian Agency for Development Cooperation.

10.1126/science.1258926

1Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA. 2Electrical Engineering Department, The Malawi Polytechnic, University of Malawi, Chichiri, Blantyre, Malawi. 3Department of Bioengineering, Rice University, Houston, TX 77005, USA. 4Corresponding author. E-mail: kortum@rice.edu

PERSPECTIVE

How to transform the practice of engineering to meet global health needs

Engineers have known how to produce safe drinking water and how to build toilets and roads in developing countries for more than 100 years. Yet, global access to such technologies is far from uniform. Approximately 768 million people do not have access to safe drinking water; 2.5 billion lack basic sanitation, and 1 billion practice open defecation. More than 50% of people who have no access to water and sanitation live in middle-income countries. Use of these technologies can mean the difference between life and death; diarrheal illness, 90% of which is related to inadequate access to clean water and sanitation, kills more children under 5 than AIDS, malaria, and measles combined.

Why is it so difficult to translate technologies that have improved public health in wealthy countries into solutions that equitably improve lives around the world? It is primarily because these solutions were developed to satisfy constraints of high-resource settings. In many cases, they cannot be easily adapted to work in low-resource settings; they are too expensive or rely on infrastructure or expertise that does not exist. For example, a recent survey of anesthetists in Uganda reported that only 20% had a constant supply of electricity for the equipment necessary for basic surgery. Between 2005 and 2011, the President’s Emergency Plan for AIDS Relief (PEPFAR) invested over $1 billion to strengthen clinical laboratories to improve HIV/AIDS care, primarily in sub-Saharan Africa; yet maintenance and repair of the necessary laboratory equipment, designed for high-resource settings, is a continued challenge across PEPFAR countries, where intermittent power can render equipment unusable, and there is limited in-house technical support to repair medical equipment. If we are to resolve global inequalities in access to innovations that improve health, we must adopt new approaches to engineering design that reflect the unique needs and constraints of low-resource settings.

Design for scarcity

Engineers design new technologies to meet societal needs in the face of economic constraints; in contrast, frugal design—designing through the lens of scarcity—begins with the assumption that material and human infrastructure are limited and not systematically integrated. These resource and infrastructure limitations dictate the constraints that frugal designs must satisfy but may also lead to reusing or repurposing of available commodities in ways that are not anticipated. For example, early efforts to scale up provision of injectable vaccines in low-resource settings led to a wave of unsafe injections, where disposable syringes were reused. It has been estimated that as many as 30% of injections in low-resource settings are unsafe because of reuse of syringes (6); this practice continued despite efforts to educate practitioners about the dangers of reusing disposable syringes. A “cultural resistance to waste” drove continued reuse of syringes, “regardless of training, advocacy, and regulatory factors” (7).

Next, it’s important to engage users early. Projects pursued from the perspective of adapting high-resource design principles to low-resource settings without firm evidence of user need beg the question of adoption and can lead to one-off projects that are scaled on the basis of donor priority without evidence that they improve outcomes. For example, the nongovernmental organization (NGO) PlayPumps (Fig. 1) was initially heralded for its ability to use children’s play on a merry-go-round to provide a much-needed community service: pumping of water to a community storage tank. With relatively little target community feedback, the U.S. government and other donors committed $16 million to scale up the implementation, and PEPFAR announced a plan to raise an additional $44 million. However, it quickly became apparent to users that, not only were the spare parts and technical expertise required to fix the PlayPump difficult to find, but also that the 27 hours of playtime needed to meet the required minimum daily water requirement was simply infeasible (8). In the end, the community users preferred the efficiency and reliability of traditional hand pumps.
Finally, there are numerous design trade-offs to be made in developing and scaling frugal technologies; rigorous experimentation is required to understand which features are most important to support positive impact at scale. For example, the rapid growth in global access to cell phones provides an opportunity to use mobile phone technology to improve health in low-resource settings. Yet, despite more than 500 pilot studies of mobile technologies for health (mHealth), there is still not sufficient low-resource settings. Yet, despite more than 500 pilot studies of mobile technologies for health (mHealth), there is still not sufficient

The role of the international and business communities was central to the development and scale-up of Unject. Indeed, the technology was developed in response to a 1987 meeting convened by the World Health Organization (WHO) to highlight the challenges of unsafe injection practices. With support from the U.S. Agency for International Development (USAID), the NGO PATH worked to improve technology originally developed by Merck. Merck transferred its intellectual property rights to PATH, which licensed the technology to Horizon Medical and went into pilot production of the Unject device. On the basis of the positive results of early implementation trials, the Unject technology was licensed to Becton Dickinson & Company (BD) in 1996 (11). BD invested $25 million to establish a dedicated manufacturing line for empty Unject packages in Singapore and $10 million to launch the product on the global market; today, vaccine manufacturers buy empty Unject containers and prefill them for global distribution (11). Since 2000, millions of doses of hepatitis B and tetanus vaccines have been delivered with Unject, and efforts are under way to use Unject to expand access to injectable contraceptives in low-resource settings (12). Through a partnership

one takes into account reductions in vaccine wastage and costs of home visits. Nonetheless, critical gatekeepers often resist suggestions to purchase Unject because of higher initial costs (11).

Template for success

Design simple solutions

Sometimes inexpensive, non-technical solutions are best. Roughly 1.3 million people die annually in road traffic accidents, 90% of whom live in low- and middle-income countries. The number of deaths due to road traffic accidents is anticipated to double by 2030, rising to the third leading cause of global mortality; most of this increase will occur in low- and middle-income countries, where the number of motor vehicles is projected to increase sixfold without improvements in road infrastructure or traffic safety (2). Modifying driver behavior is an inexpensive alternative to building better road systems. For example, in an experiment aimed at examining the influence of social pressure on driver safety in Kenyan minibuses, signs were posted in half of a fleet of vans encouraging passengers to collectively speak out about unsafe driving practices (13). When compared with the control group, passengers riding in vans with signs filed about one-third as many insurance claims, and injury and fatality claims dropped nearly 50%. Behavior as a frugal design solution is low cost and easily adapted to different contexts, which makes it highly scalable.

Don’t overlook traditional solutions

Investments to eradicate malaria have resulted in dramatic reductions in mortality, as much as 42% globally since 2000, with child mortality rates in Africa dropping by nearly 54% during the same time period (14). But with this has come increasing resistance to antimalarial medicines and heavily used insecticides such as pyrethoids. With the likelihood that new drugs are still many years out, environmental management could emerge as a key means of vector control. In the early 20th century, engineers worked with malaria control personnel to manage the mosquito population through environmental design features, many of which still show efficacy. For example, mosquito-proofing houses and better water management and irrigation methods have been highly successful at helping to reduce the incidence of malaria (15). This low-cost approach to governance, combining simple water resource management together with public education, can be successfully applied globally. In places like California, outreach is now emphasizing environmental controls: the elimination of standing water and using biological control measures (e.g., mosquito larvac-consuming fish) (16).

Think long-term, while solving short-term

Point-of-use water treatment with chlorine is widely considered one of the most effective strategies for providing safe drinking water in water-scarce settings (17). As much as a 29% reduction
in diarrheal illness in children was seen with point-of-use chlorine treatment compared with traditional disinfection methods, a protective effect that was nearly universal across populations and conditions in short-term trials. But with rapidly increasing urbanization, it might be more efficient to begin to extend design innovation to technologies that increase the production of portable water through reuse, which would also help to address water scarcity. In Windhoek, Namibia, highly treated reclaimed water has been combined with portable water directly in the water distribution system since the late 1960s (18). The reclaimed water meets all drinking water standards, which makes it a viable option under both financial and water provision terms.

Engage students in frugal design

Students must be educated to become successful practitioners of frugal design from a systems perspective (19). Curricular reforms are even more crucial in low-resource settings where a lack of engineering capacity and infrastructure severely limits economic development (20) and where knowledge of contextual constraints is paramount to the success of frugal designs. Sub-Saharan Africa suffers a chronic lack of indigenous engineering capacity: In the early 2000s, the number of engineers emigrating annually from South Africa matched the number of engineers graduating (21). Where available, tertiary education in engineering has not received anywhere near the investment required to keep pace with the developed world. Learning foci are too theoretical, based on outdated curricula, and not relevant to local needs. The teaching and learning approaches that emphasize rote memorization stunt students’ potential to be innovative. Faculty lack resources for providing lab experiences and salaries are often so low that many take on additional jobs. Students who graduate from such programs face notable levels of unemployment, most likely because they graduate without needed skills and experience to be employable. Over $130 million has been invested to strengthen medical school education through the Medical Education Partnership Initiative by the U.S. National Institutes of Health, with a focus on developing human capacity, retaining faculty and graduates, and developing regionally relevant research programs (4); similar investments are critical if tertiary engineering education is to develop sufficient and relevant engineering capacity in the region. To fully leverage such investments, preuniversity science and math education must also be strengthened.

Design for context

Sustained implementation of a new frugal technology that performs well compared with technologies designed for higher-resource settings requires successful navigation of a number of contextual and political challenges. The explosive global growth in the availability of mobile phone technology illustrates the kind of success that is possible when the proposition of a new technology is clear at all levels—to overcome the implementation challenges for technologies that require substantial investment in public infrastructure. The infrastructure to provide clean water and sanitation in developed countries requires robust vertical governance, from national to local levels. In most low-resource settings, local governments have insufficient capital to build community-level infrastructure and even less human capital for long-term maintenance. Resource constraints exist in every setting, but the nature and type of constraints in developing countries requires rethinking traditional processes. For example, the traditional design cycle for public infrastructure projects may require adjustment. Civil engineers are currently trained to optimize a design, then bid the project and accept the low bid. An alternative approach where the design engineer and end-user participate directly in a design process with feedback that is aimed at lowering the end-user costs could help designers maintain perspective about context and yield innovation that is more frugal in nature.

Adoption is facilitated when end-users see a direct personal benefit associated with purchase of a new technology. Access to mobile phones increased profits for fishermen in India and market participation for farmers in Uganda (22). In contrast, the benefits of health or sanitation technologies may not be as apparent to end-users. The public sector, which is usually charged with promoting such technologies, is not good at market research.

Finally, adoption is facilitated in competitive markets that can drive down the price of technology services; market liberalization was associated with a 90% drop in average mobile phone call prices and an increase in traffic volumes (22). In the global health care industry, two recent trends may help to accelerate the implementation of promising technologies. First, rapidly expanding health care markets in emerging economies are drawing the interest of multinational corporations (5). Inflation-adjusted biomedicine research and development expenditures increased in India and China by 6.3% and 32.8% per year, respectively, from 2007 to 2012; in contrast, expenditures in the United States, Canada, and Europe decreased over the same period (24). Likewise, an increase in accountable care organizations may drive investment in resource-saving technologies in the United States.

Conclusion

We are not the first to suggest a transition to frugal design—a number of recent “grand challenges” design efforts have engaged the technology
The evidence base for health programming in humanitarian crises

Given the growing scale and complexity of responses to humanitarian crises, it is important to develop a stronger evidence base for health interventions in such contexts. Health interventions in humanitarian crises present unique challenges to rigorous and effective research, but there are substantial opportunities for scientific advance. Studies need to focus on whether the translation of evidence from noncrisis scenarios is not viable and on ethical ways of determining what happens in the absence of an intervention. Robust methodologies suited to crisis settings have to be developed and used to assess interventions with potential for delivery at scale. Strengthening research capacity in the low- to middle-income countries that are vulnerable to crises is also crucial.

Health interventions in humanitarian crises—situations where disasters or conflicts constitute a critical threat to the health, safety, security, or well-being of a population—are an important focus within the broader field of global health. Such crises affect increasingly large numbers of people worldwide. There have been notable advances in programming, specifically in immunization and treatment of acute malnutrition, over the past 20 years. However, despite the increasing professionalization and standardization of humanitarian work (2), there is a consensus that the evidence base for much current practice remains weak (3, 4).

It is not coincidental that the evidence base for health programming is frail in crisis situations that cause high mortality and morbidity. Such health care contexts also present many challenges to scientifically rigorous research. Prime among these challenges is the acute vulnerability of populations (3), which requires prompt intervention rather than exploration of the comparative benefits and limitations of alternative approaches. In the face of acute needs and against a typical backdrop of limited funding, poor security, and short-ages in human resources and logistics, simply providing immediate minimal standards of health services becomes an overriding concern. The space for research—particularly that involving experimental interventions or randomization or, more generally, offering different standards of care within the same population—dramatically shrinks (6, 7). Acutely vulnerable populations have a compromised capacity to give meaningful informed consent. Refusing study participation may be seen as rejecting vital medical assistance (8, 9).

The rapid response required in humanitarian crises contributes to an unpredictable programming environment. Although many health risks in the aftermath of disasters or conflict are predictable and minimum standards for response and best-practice interventions have already been established, health needs can evolve rapidly, and adaptable program strategies are required. Political sensitivities and security concerns may also have a substantial influence on the timing, coverage, and delivery of health interventions (10). Different sectoral interventions that affect health (including provision of shelter, water and sanitation, food security, livelihoods, nutrition, and vaccination) may be introduced with limited coordination and varying population coverage (11). This makes identification of comparison or control groups and attribution of outcomes to any single intervention methodologically challenging.

Difficulties in coordination are not only cross-sectoral but also reflect the more general complexity of multiple intervening actors and initiatives that characterize humanitarian responses. A population will typically receive services through a complex web of national and local governmental institutions, local civil society partners, United Nations agencies, nongovernmental organizations, and, in some emergencies, foreign
How to transform the practice of engineering to meet global health needs
Deb Niemeier, Harry Gombachika and Rebecca Richards-Kortum
(September 11, 2014)
Science 345 (6202), 1287-1290. [doi: 10.1126/science.1257085]

Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/345/6202/1287

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl