Sequencing power for every scale.

NEW
HiSeq X™ Ten

Population power.
$1000 human genome and extreme throughput for population-scale sequencing.

HiSeq® 2500
Production power.
Power and efficiency for large-scale genomics.

NEW
NextSeq™ 500
Flexible power.
Desktop speed and simplicity for whole-genome, exome, transcriptome sequencing, and more.

MiSeq®
Focused power.
Desktop speed and simplicity for targeted and small-genome sequencing.

MiSeqDx™
Focused Dx power.
The first and only FDA-cleared *in vitro* diagnostic next-generation sequencing system.

Find the right sequencer to fit your every need. www.illumina.com/power
Evaluating DNA sample integrity is critical to sequencing workflows. And no system is better at it than the LabChip® GX Touch. It can handle up to 24 samples at a time, both pre- and post-PCR, for savings of up to 30% in reagent costs. Our unique genomic quality scoring eliminates guesswork, with robust metrics for RNA/DNA integrity. And with our easy-to-use touchscreen interface, even novice users can quantify samples with the best of them. LabChip GX Touch: It’s quantification you can count on.

24 CHANCES TO SEND BETTER DNA DOWNSTREAM

www.perkinelmer.com/LabChip
At Dhharmacon, our passion is science. Yours.

We love to celebrate advancements in science – especially when you’re the one who made them happen. Seeing you succeed is why we’re here. And why you can always count on us for high-quality, technologically advanced RNAi and gene expression products, expert guidance and troubleshooting… and heartfelt congratulations.

Dharmacon™
part of GE Healthcare

gelifesciences.com/dharmacon
Expand your toolbox
with NEB’s interactive tool, NEBioCalculator™.

Don’t let molar ratio calculations slow you down. With NEBioCalculator, quickly and confidently perform scientific conversions and calculations. With NEB®’s online tools, easier experimental design is right at your fingertips.

• To find the right cloning protocol, use our newest NEBtool, NEBcloner™.

• Identify the restriction enzyme cut sites within your DNA sequence with NEBcutter®.

• Calculate the optimal annealing temperature for your PCR with NEB’s Tm calculator.

Explore NEB’s entire suite of interactive online tools at www.neb.com/nebtools
The QX200™ AutoDG™ Droplet Digital™ PCR system is here.

Bio-Rad’s Droplet Digital PCR (ddPCR™) systems gave scientists the power to unveil new discoveries through precise and absolute nucleic acid quantification. The new automated droplet generator simplifies the ddPCR workflow, making digital PCR both scalable and practical. Automated droplet generation minimizes hands-on time, eliminates user-to-user variability, and makes every droplet count.

Learn more at bio-rad.com/info/simplieddpcr
Translate discoveries into therapeutics

Improve accuracy, reproducibility and confidence in your drug discovery research

- Discover novel targets and pathways with quality reagents and advanced gene editing technologies
- Create diverse compounds with the largest portfolio of building blocks, catalysts and reagents
- Accelerate compound discovery with chemically diverse compounds and screening libraries
- Improve IND filings with more predictive assays and ADME/Tox standards

Rediscover the power of your research
sigma-aldrich.com/translational
Because real-time PCR results are only as good as the individual reagents, we created optimized reagents for each step of your experiment. The advanced formulation of our reverse transcription kits ensures ultrasensitive and highly unbiased cDNA synthesis. Our patented* Sso7d fusion DNA polymerase provides superior performance with complex samples and difficult-to-amplify targets. Together, these reagents allow you to detect even the smallest changes and lowest expression levels with the greatest confidence. What will you discover when you can see details you could not see before?

To learn more, visit bio-rad.com/info/discover2

* U.S. patents 6,627,424; 7,541,170; and 7,560,260.
Webinar
Innovations in Light Sheet Microscopy
Strategies and New Applications

Speakers

Thai Truong, Ph.D.
University of Southern California
Los Angeles, CA

Peter G. Pitrone, DipRMS
MPI-CBG
Dresden, Germany

Orla Hanrahan, Ph.D.
Andor Technology
Belfast, Ireland

Wednesday, October 29, 2014
12 noon Eastern, 9 a.m. Pacific
4 p.m. UK (GMT), 5 p.m. Central Europe (CET)

Over the past 10 years, light sheet microscopy (or selective plane illumination microscopy, SPIM) has transformed the microscopy field, offering a faster, less phototoxic technique than conventional methods that can create true 3-D images. Ideal for observing living organisms and the cellular dynamics of biological systems, this method uses a unique illumination approach to achieve high penetration depths, fast imaging speeds, and subcellular-level resolution. Because a specimen is illuminated with a sheet of light rather than a focused laser beam, only regions directly exposed to light will fluoresce—creating minimal photo-induced tissue damage.

In this webinar, the speakers will discuss their own uses of light sheet microscopy and provide insight into its different applications, including open source SPIM and the dynamic behavior of subcellular components within live specimens.

During the webinar, viewers will:

- Learn about state-of-the-art light sheet microscopy techniques
- Discover recent advances in the field
- Hear how microscopists are applying the technology
- Have their questions answered live by our expert panel!

REGISTER NOW!
webinar.sciencemag.org

Brought to you by the Science/AAAS Custom Publishing Office

Webinar sponsored by

ANDOR
an Oxford Instruments company
The meeting will highlight the information transformation happening in science and technology brought about by recent advances in organizing, visualizing, and analyzing data.

Advance Your Career

Who will you meet among thousands of science and technology leaders?

Networking opportunities and career development workshops will benefit your career long after you leave San Jose.

Register now:

www.aaas.org/meetings
This is the start of something big.

Introducing *Science Advances* – the new, online-only, open-access journal from *Science* and AAAS. Find out how you can be among the first authors published at scienceadvances.org.
Rewriting the Genome: Even DNA Needs an Editor

Until relatively recently, the power of molecular biology was at once vast and limited. Researchers who wanted to knock out specific genes to see what they did mostly had to restrict such studies to mice, and specific strains at that. Now a new class of genome- and epigenome-editing tools is reshaping the landscape. From Arabidopsis to humans to zebrafish, researchers are finding that, generally speaking, when it comes to the genome, if they can dream it, they can build it. By Jeffrey M. Perkel

To get a sense of the transformative power of genome-editing tools, consider plants. Unlike mice, there is no such thing as a plant embryonic stem (ES) cell. Even if there were, homologous recombination rates in plant cells are too low to yield reliable genetic modification without a little help. Thus, genetic tinkering in these organisms is typically accomplished using either random mutagenesis or genetic crosses, or via Agrobacterium infection or a specialized “gene gun.”

Such techniques have been used successfully, of course—most crop plants these days are genetically modified. But those efforts rely on random events; plant researchers had no way to make targeted genomic modifications, explains Dan Voytas, professor of genetics and director of the Center for Genome Engineering at the University of Minnesota, Minneapolis.

Now, thanks to genome engineering technology, they do. “You can say, okay, I know what that gene is, I know the sequence variation I need to introduce into my crop plants, and you can just go ahead and introduce it directly without engaging in an extensive breeding program,” Voytas says.

On the research front, such tools are nothing short of transformative. Voytas uses them to rewrite the genome in plants such as tobacco and tomato, and they hold similar promise for other model organisms. In the clinic, genome editing can be coupled with human induced pluripotent stem cell technology to, for instance, create genetically repaired patient-specific transplants.

Questions of targeting specificity remain, but Phillip Sharp, institute professor at the Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology (MIT), calls these technologies a “game-changer” on par with RNA interference. “RNAi was a major transition in how we do cell biology; this will be something comparable. And it’s going to greatly accelerate the speed in which we can probe problems from cancer to other normal development using our biological systems. It’s really a very important advance.”

Nuclease-based strategies

Genome-engineering approaches generally use a site-specific endonuclease to introduce a double-stranded DNA break at a specified point in the genome, like a custom restriction enzyme. As the cell repairs the break, it can either inadvertently disrupt the gene by adding or removing a few bases (a process called nonhomologous end-joining, or NHEJ) or use an exogenous piece of donor DNA to rewrite the damaged sequence to researchers’ specifications via homologous recombination.

One of the earliest nuclease technologies involved enzymes called meganucleases, but these were less than user-friendly, explains Philippe Duchateau, chief scientific officer at Cellectis, a French genome-engineering firm that still uses the technology. “They are very difficult to engineer ... [requiring] a long and costly process.”

Zinc finger transcription factors have proven easier to manipulate. Researchers have long known that these proteins bind to DNA in a modular fashion, with each “finger” recognizing three to four specific nucleotides. In 2003, two teams independently demonstrated that they could string together custom arrays of zinc fingers to target novel DNA sequences and couple the array to the FokI nuclease to induce specific DNA changes at those sites. One group knocked out the yellow gene in fruit flies; the other repaired a GFP mutation in human cells. Two years later, researchers at Sangamo BioSciences used these so-called zinc finger nucleases (ZFNs) to repair a mutation in the IL2R-gamma gene in human cells, demonstrating the clinical potential of the technology.

Yet ZFNs never really took off in academia, in part because the technology was largely inaccessible—Sangamo owned the intellectual property, though they licensed it to Sigma Aldrich in 2007 for research purposes—and partly because good ZFNs are hard to build. In theory, explains Philip Gregory, senior vice president and chief scientific officer at Sangamo BioSciences, a library of 64 zinc fingers (one for each codon) should be sufficient to target any sequence. But in practice, a given finger’s binding properties differ from
array to array. “Context matters,” he says.

In 2009, researchers deciphered a new class of transcription factors called TALEs. Like ZFNs, TALEs are modular structures, but each TALE module specifies a single nucleotide in the recognition sequence, and does so more or less independently of its neighbors. By fusing custom TALEs to the FokI nuclease (a so-called TALE nuclease, or TALEN), researchers could target pretty much any sequence they desired—though as TALENs are substantially larger than ZFNs and highly repetitive, the cloning process itself isn’t trivial (TALEN research tools are available through Addgene and Life Technologies, part of Thermo Fisher Scientific.)

TALENs made genome-editing technology accessible in a way it hadn’t been before. But in 2012 the editing landscape tilted on its axis again when Jennifer Doudna, a Howard Hughes Medical Institute (HHMI) investigator and professor of biochemistry and molecular biology at the University of California, Berkeley, and Emmanuelle Charpentier, then at Umeå University, worked out the mechanics of an RNA-guided bacterial immune system complex called clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9.

With reagents available through Addgene, Horizon Discovery, Life Technologies, New England Biolabs, and Sigma Aldrich, the two-component CRISPR-Cas9 is by far the simplest genome-editing system to date. It takes at least a week to make a TALEN, and sometimes months for a ZFN. But all CRISPR-Cas9 requires is a 20-nucleotide “single-guide” RNA specifying the desired target and Cas9 nuclease to cut it. That makes it easy for neophytes to implement the technology, and to explore different targeting sites. And, because its sequence targeting is encoded in RNA rather than protein, Cas9 can hit multiple sites at once, a process known as multiplexing.

Voytas likens genome-editing approaches to the evolution of DNA sequencing. “ZFNs are sort of [like] Maxam–Gilbert—you can get it to work and you can get the information, but you struggled to do so. TALENs are [like] Sanger sequencing. And next-generation sequencing is [akin to] CRISPR-Cas, it just happens so fast and easily,” he says.

Indeed, William Skarnes, a senior group leader at the Wellcome Trust Sanger Institute in Cambridge, United Kingdom, has spent more than a decade knocking out genes in mice the old-fashioned way. Between creating the targeting vectors, inserting them into ES cells, testing for gene modification, inserting the cells into blastocysts, and testing and crossing founders, each line could take from six to 12 months to create, he says. Now, that library is looking dated. “With CRISPR technology it’s just a simple injection of some very simple reagents directly in a one-cell embryo to create the same mutations. It’s remarkable—I mean, it’s something that we dreamt about at the very beginning of ES cell technologies.”

Targeting specificity

That’s not to say CRISPR-Cas9 is without flaws. At least in its initial incarnation, the system is less discriminating than users would like, and single-guide RNAs have been shown to induce off-target effects in the human genome. Naturally, researchers have been developing strategies to counteract that problem.

Some, like Harvard University geneticist George Church, have shown that knocking out one of the two DNA cutting sites in Cas9 to create a so-called nickase, and pairing those molecules using two closely spaced guide RNAs, dramatically improves specificity. (That strategy is being commercialized by Sigma Aldrich, according to principal R&D scientist Greg Davis, who notes the approach works with guides as far as 150 bases apart. “This is a key distinguishing point,” he says, as it provides considerable targeting flexibility.) J. Keith Joung, associate chief of pathology for research at Massachusetts General Hospital, and David Liu at Harvard University independently described another approach, fusing a catalytically inactive Cas9 to FokI. Because FokI is an obligate dimer, that construction, like paired nickases, requires two binding events and thus yields greater precision, albeit with less targeting flexibility.

Guide RNA length can also influence specificity. Some have shown that extending the guide RNA by two nucleotides reduces off-target effects, while in Joung’s hands truncating the guide RNA reduces off-target mutation rates by up to 5,000 fold.

What is lacking, says Joung, is a side-by-side comparison to see which strategy truly performs best, not to mention a method—other than whole-genome sequencing—to identify modified sites across the genome. Still, Church says the technology—with an error rate of about one in 100 billion base pairs—probably is already sufficiently specific for research applications, where simple expedients such as comparing the effects of multiple guide RNAs can likely overcome possible off-target effects. Rather, it is in clinical applications where specificity really counts, he says, and the only way to determine if that’s an issue is to put the technology into animals, and ultimately humans, and see what happens.

“In the end it’s not going to be determined by sequencing off-targets,” he says. “It’s going to be determined by whether animals get cancer or not.”

Clinical applications

In early 2014, Sangamo published the first human clinical trial to use genome-editing technology. The company’s researchers harvested CD4+ T cells from HIV+ patients, infected them with a virus expressing a ZFN to knock out the HIV co-receptor CCR5 via NHEJ, and returned them to patients. “In every case, on infusion of the CD4 T cells, we see a marked..."
increased in CD4 T cells in these patients,” says Gregori. Furthermore, those cells exhibited a “selective survival advantage” relative to unmodified cells, he says.

Sangamo is also pursuing homologous recombination-based therapeutics, says Gregori. For instance, its researchers recently published data demonstrating the ability to repair the IL2R-gamma gene in hematopoietic stem cells from patients with X-linked severe combined immunodeficiency—a cell population that theoretically could be used to reseed a patient’s bone marrow.

TALENs and CRISPRs also are heading to the clinic, with Collectics pursuing the former and Editas Medicine and CRISPR Therapeutics the latter.

In June, Daniel Anderson and Tyler Jacks at MIT demonstrated the potential clinical power of CRISPR-Cas9-based editing by delivering a vector co-expressing Cas9 and a guide RNA, plus a second DNA containing a repair template, into the tail veins of a mouse model of hereditary tyrosinemia type I, which is caused by a single point mutation in the fumarylacetoacetate hydrolase gene. Injection corrected the mutation in 1 out of every 250 liver cells, rescuing the diseased phenotype within a month. “I thought that was just amazing,” Doudna says.

Epigenome editing

Still, for all its potential as a nuclease, Cas9 can do so much more. The protein is just a “molecular machine that recognizes DNA in a targeted way,” Doudna says. As a result, it, and TALEs and zinc fingers for that matter, can serve as platforms for more extensive genomic tinkering—“epigenome engineering,” as it were.

Researchers have coupled catalytically inactive Cas9 and TALE domains to transcription activators and repressors, DNA methyltransferases, and histone modifying enzymes, thereby directing those activities to specific sites in the genome. They have coupled TALENs and Cas9 to fluorescent proteins to investigate chromosomal architecture. Church’s team has even identified Cas9 orthologs with different sequence requirements, which could be used, among other things, to target distinct activities to different genomic loci simultaneously.

Such epigenomic designs have potential clinical value, says Feng Zhang, core member of the Broad Institute of MIT and Harvard and a co-founder of Editas. “From a therapeutic perspective you may want to turn a gene on that needs to be on but for some epigenetic reason is turned off,” he says. For example, there are inherited diseases in which the maternal (expressed) copy of a gene is mutated while the paternal copy is wild type but silent. “One way to treat it might be to turn that gene on by using a Cas9 or TALEN activator,” Zhang says.

But such strategies present their own complications, especially regarding off-target effects. In one recent study, a team led by Sharp and Zhang used chromatin immunoprecipitation and next generation DNA sequencing (ChIP-Seq) to determine where in the genome a catalytically inactive but RNA-guided Cas9 protein binds. The team identified between 2,000 and 20,000 binding sites per guide RNA tested. But when they used a catalytically active Cas9, only one of 295 potential off-target sites the team tested was actually modified, suggesting that sequence binding and cutting occur in two distinct steps.

“This is a non-trivial nuance,” explains Stephen Ekker, professor of biochemistry and molecular biology at the Mayo Clinic Cancer Center in Rochester, Minnesota. “There are many reviews that argue that what happens is that the guide RNA finds double-stranded DNA in an extended complex, like a PCR primer does, and then Cas9 comes in and cuts it. That’s not how it works.” Sharp’s data instead suggest a genome-scanning mechanism in which binding and cutting are distinct events—an observation that implies epigenetic control using dead Cas9 fusions could have unintended consequences, as the protein may bind sites other than its intended targets. “Basically, any approach that really depends on having a single specific binding event may be compromised,” he says.

Still, there’s no denying the power of CRISPR-Cas9, and other editing tools. Ekker, who teaches a course on genome engineering, says molecular biology could be on the cusp of a technology boom akin to that ushered in by the invention of the transistor. Only time will tell what novel applications arise, he says. But this at least is clear: Researchers need no longer think of the genome as something with which they “tinker;” they can, well, engineer it.

Jeffrey M. Perkel is a freelance science writer based in Pocatello, Idaho. DOI: 10.1126/science.opms.p1400089
Genomic Editing Tool
CRISPR/Cas9 is revolutionizing the field of genomic editing by providing scientists with a powerful tool able to change any gene, in any cell in a highly targeted manner and without introducing foreign DNA. This latest tool in genome editing allows for specific genome disruption and replacement in a flexible and simple system resulting in high specificity and low cell toxicity. The CRISPR/Cas9 genome editing system requires the co-expression of a Cas9 protein with a guide RNA vector expressed from the human U6 polymerase III promoter. With the protospacer-adjacent motif (PAM—sequence NGG) present at the 3’ end, Cas9 will unwind the DNA duplex and cleave both strands upon recognition of a target sequence by the guide RNA. The functional cassette synthesized in the rescue donor vector can then be inserted into the unwound DNA. The repaired genome will now express your desired sequence with or without tags.

AMS Biotechnology
For info: +44-(0)-1235-828200
www.amsbio.com

Gene-Knockout Kits
New gene-knockout kits provide a complete solution for researchers to knock out a human gene at the chromosomal level. This genome wide offering provides an unprecedented convenience for genome editing using the CRISPR technology. OriGene has always been focused on providing state-of-the-art reagents of highest quality. Its comprehensive offering of expression cDNA clones, shRNA/siRNA, recombinant proteins, and antibodies are widely utilized in the biomedical research community worldwide and are cited in thousands of publications. A kit is provided against every human gene locus, containing two gRNAs and a compatible donor vector with a functional cassette. In addition to gene knockout, this kit can also be used for promoter strength study for each gene locus. The predesigned nature of the kit greatly reduces the researcher’s time and effort using this platform.

OriGene Technologies
For info: 888-267-4436
www.origene.com/crispr-cas9

ChIP Sequencing Kit
Combining chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) allows the accurate survey of interactions between proteins and DNA, enabling the study of epigenetic marks which is essential for a full understanding of transcriptional regulation of genes. Chromatrap is a new quicker, easier, and more efficient way of performing ChIP-seq assays. It uses discs of an inert, porous polymer to which Protein A or Protein G has been covalently attached to maximize the capture efficiency of the target chromatin/antibody complex. Chromatrap utilizes the solid-state technology in parallel with high throughput sequencing to deliver a precise ChIP-seq protocol from small cell numbers and chromatin concentrations. Specifically adapted for greater chromatin concentrations, Chromatrap Chip-seq now combines the dynamic range of Chromatrap with the downstream analysis power of deep sequencing, allowing the genome wide identification of transcription factor binding sites and specific DNA associated protein modifications with no limitation in scale and resolution.

Porvair Sciences
For info: +44-(0)-1978-666240
www.chromatrap.com

DNA-Sequencing Kit
The TruPlex DNA-sequencing (DNA-seq) Kit has high multiplexing capability with improved performance for Illumina Next Generation Sequencing (NGS) Platforms. TruPlex DNA-seq builds on the innovative TruPLEX chemistry to generate DNA libraries with expanded multiplexing capability and even greater diversity with lower duplication rates. The TruPLEX chemistry is the only single-tube, three-step library prep kit for low input (0.05 ng to 50 ng) amounts, which is especially useful for clinical samples such as plasma, other biofluids, and FFPE samples. Kits contain up to 96 Illumina-compatible indexes pre-dispersed and sealed in linear barcoded microplates. TruPlex DNA-seq can be used in any DNA-seq, RNA-seq, or Chip-seq application and offers robust target enrichment performance with all of the leading platforms.

Rubicon Genomics
For info: 734-677-4845
www.rubicongenomics.com

DNA Barcodes
The NEXTflex Dual-Index DNA Barcodes are designed for multiplexing of up to 192 samples for library preparation. These barcodes are compatible with high throughput automation for increased scale and cost efficiency. The NEXTflex Dual-Index Barcodes can be used to multiplex genomic DNA, RNA, and Chip sequencing libraries. The NEXTflex Dual-Index DNA Barcodes allow pooling of multiple library preparations in a single flow cell lane. The indexes are designed to be sequencing error resistant and allow for consistent and proper differentiation between samples.

Bioo Scientific
For info: 888-208-2246
www.biooscientific.com
“AAAS S&T Policy Fellowship gave me a fuller appreciation for how much scientists can and should contribute to U.S. policy development and implementation.”

I HAD A MONUMENTAL EXPERIENCE. YOU CAN TOO.

— Matthew Schmolesky, Ph.D., Neuroscience, 2004-06 Executive Branch Fellow, U.S. Department of State; Associate Professor, Department of Psychology; Director, Neuroscience Program, Weber State University

MAKE A DIFFERENCE. TRANSFORM YOUR CAREER.

Apply your scientific analysis and technical knowledge to inform policy through assignments in the Legislative, Executive and Judicial Branches.

Stipends from $75,000 to $100,000. Applications due November 1.

Details at: aaas.org/policy-fellowships/science3

Enhancing Policy, Transforming Careers
I’m a SampleSorcerer

Well, that’s what everyone thinks. Thanks to Ion Torrent™ next-generation sequencing solutions, I can do plenty of amazing things. Like get human gene expression research data for more than 20,000 genes simultaneously using just 10 ng of FFPE RNA, and use straightforward analysis tools to go from sample to gene quantitation in under 2 days. Maybe there’s a little magic to it after all.

Find out more at lifetechnologies.com/ampliseqtranscriptome