EVERYTHING COUNTS

BUT NOTHING COUNTS LIKE THE COUNTESS® II FL AUTOMATED CELL COUNTER

You see the potential in every sample, in every cell. In your work, simplicity, affordability, and flexibility mean more time for discovery.

Count cells in a whole new light with the quantifiably brilliant Countess® II FL Automated Cell Counter.

Everything counts at lifetechnologies.com/countessII
A NEW PERSPECTIVE TO cancer metabolism research

XF technology provides the easiest and most comprehensive assessment of cancer cell metabolism, measuring glucose and glutamine metabolism, and fatty acid oxidation of cancer cells in a microplate, in real time!

— Kacey Caradonna, Ph.D., Application Scientist, Seahorse Bioscience

The NEW XFp Extracellular Flux Analyzer

With the XFp Analyzer, it is easier than ever to perform functional metabolic measurements in live cells in your own lab. The XFp is designed to perform standard metabolic assays reliably and consistently on your precious samples. The compact format of the XFp Analyzer and XF stress tests make this new platform ideal for pairwise comparisons to validate your genomic or proteomic data.

See what’s possible.
Scan this QR code to view videos and see what the XFp Analyzer can achieve. Visit www.seahorsebio.com/science for more information!
Take Control with dynamic cell culture.

Biology is so much more than DMEM/FBS, 37 °C, 5% CO₂.
It’s easy to program automated changes to culture media, gas and temperature, while tracking cell responses, with the flexible, intuitive CellASIC® ONIX Microfluidic Platform. By taking control of this truly in vivo–like environment, you’ll be able to perform dynamic, time-lapse experiments never before possible.

Watch live cells respond in real time: www.emdmillipore.com/CellASIC
Over 150 Peer-Reviewed Droplet Digital PCR (ddPCR™) Publications*

From detection of rare mutations and cancer biomarkers to quantification of gene expression and miniscule viral loads, the QX100™ and QX200™ Droplet Digital PCR Systems have been used to redefine the limits of absolute nucleic acid quantification. With over 150 peer-reviewed publications, ddPCR platforms have outperformed other digital PCR systems by several orders of magnitude. The third generation QX200™ AutoDG™ System now brings automation and scalability to digital PCR.

Visit bio-rad.com/info/150list for a full publication list and to learn more.

*Based on PubMed data, September 2014.
Call for 2014 Cozzarelli Prize Nominations

The PNAS Editorial Board is now accepting nominations through January 9, 2015 for the 2014 Cozzarelli Prize. This award recognizes scientific excellence and will be given to six papers published in PNAS during 2014.

Nominations should be sent to pnas@nas.edu and should include a citation and brief explanation of the merits of the work. The award recipients will be recognized during the PNAS Editorial Board Meeting and the NAS Annual Meeting Awards Ceremony on April 26, 2015 in Washington, DC.

For more information and a list of previous winners visit www.pnas.org/site/misc/cozzarelliprize.xhtml.
This person is made up of 20,000 unique proteins.

Want to take a closer look?

For the first time a comprehensive database of 13,000,000 annotated images, mapping the human proteins in all major organs and tissues, all in one place. The Human Protein Atlas (HPA) is a fully searchable database that has taken a team of scientists and IT engineers over 1,000 man years to compile. 20,000 protein coding-genes analyzed with transcriptomics and antibody-based profiling down to the single cell level.

A truly unique resource that is completely free with unrestricted access.

Want to take a closer look yourself?
Then why not search for your favourite protein.

THE HUMAN PROTEIN ATLAS 📚
The Keystone Symposia 2015 Meeting Series

Precision Genome Engineering & Synthetic Biology (A1)
Organizers: Philip D. Gregory, Jennifer A. Doudna & Ron Weiss
Jan 11–16, 2015 | Big Sky Resort | Big Sky, Montana | USA

Viral Immunity (A2)
Organizers: Jonathan W. Yewdell, Donna L. Farber, Nicole Baumgarth & Jack R. Bennink
Jan 11–16, 2015 | Beaver Run Resort | Breckenridge, CO | USA

The Biological Code of Signaling – A Tribute to Tony Pawson (F1)
Organizers: Tony Hunter & Rune Linding
Jan 11–16, 2015 | Sheraton Steamboat Resort | Steamboat Springs, CO | USA

Integrating Metabolism & Tumor Biology (J1)
Organizers: Ralph J. DeBerardinis, Robert T. Abraham & Eyal Gottlieb
joint with **PI 3-Kinase Signaling Pathways in Disease (J2)**
Organizers: Lori Friedman, David A. Fruman & Phillip T. Hawkins
Jan 13–18, 2015 | Fairmont Hotel Vancouver | Vancouver, BC | Canada

Immunity to Veterinary Pathogens: Informing Vaccine Development (A3)
Organizers: William T. Golde, Wendy C. Brown & Ivan Morrison
Jan 20–25, 2015 | Keystone Resort | Keystone, CO | USA

Host Response in Tuberculosis (J3)
Organizers: JoAnne L. Flynn & Willem A. Hanekom
joint with **Granulomas in Infectious & Non-Infectious Diseases (J4)**
Organizers: Thomas A. Wynn, Paul Kaye & Vishva M. Dixit
Jan 22–27, 2015 | Santa Fe Community Convention Center | Santa Fe, NM | USA

Epigenetics & Cancer (A4)
Organizers: Tony Kouzarides & Kristian Helin

Neuroinflammation in Diseases of the Central Nervous System (A5)
Organizers: Richard M. Ranishoff, Christopher K. Glass & V. Hugh Perry
Jan 25–30, 2015 | Sagebrush Inn & Suites | Taos, NM | USA

Mitochondria, Metabolism & Heart Failure (J5)
Organizers: Richard N. Kitsis, Gerald W. Dorn II & Rong Tian
joint with **Diabetes & Metabolic Dysfunction (J6)**
Organizers: Jeffrey E. Pessin, Alan R. Saltiel & Deborah M. Muoio
Jan 27–Feb 1, 2015 | Santa Fe Community Convention Center | Santa Fe, NM | USA

Autoimmunity & Tolerance (B1)
Organizers: Jane L. Grogan, Joanne L. Viney & Gerald T. Nepom
Feb 3–8, 2015 | Keystone Resort | Keystone, CO | USA

Endoderm Lineages in Development & Disease (B2)
Organizers: Lori Susel, Hans-Willem E. Snoeck, James M. Wells & Aaron M. Zorn
Feb 8–13, 2015 | Keystone Resort | Keystone, CO | USA

Tumor Immunology: Multidisciplinary Science Driving Combination Therapy (J7)
Organizers: Elizabeth M. Jaffe & Axel Hoos
joint with **Antibodies as Drugs: Immunological Scaffolds as Therapeutics (J8)**
Organizers: Pablo Umaña, Mark X. Sliwkowski & Martin J. Glennie
Feb 8–13, 2015 | Fairmont Banff Springs | Banff, AB | Canada

Plant Receptor Kinases: From Molecules to Environment (B3)
Organizers: Cyril Zipfel & Steven C. Huber
Feb 8–13, 2015 | Sagebrush Inn & Suites | Taos, NM | USA

Systems Biology of Lipid Metabolism (B4)
Organizers: Matej Oresič, Antonio J. Vidal-Puig & Ana Maria Cuervo
Feb 9–13, 2015 | Beaver Run Resort | Breckenridge, CO | USA

RNA Silencing in Plants (G1)
Organizers: Robert Martienssen & Craig S. Pikaard
Feb 17–22, 2015 | Keystone Resort | Keystone, CO | USA

Hematopoiesis (B6)
Organizers: Timm Schroeder, Hanna K.A. Mikkola & Patricia Ernst
Feb 22–27, 2015 | Keystone Resort | Keystone, CO | USA

Gut Microbiota Modulation of Host Physiology: The Search for Mechanism (C1)
Organizers: Fredrik Bäckhed, Ruth E. Ley & Yasmine Belkaid
Mar 1–6, 2015 | Copper Mountain Resort | Copper Mountain, CO | USA

Cell Biology of the Heart: Beyond the Myocyte-Centric View (X2)
Organizers: Peter Kohl, Robert G. Gourdie & Stefanie Dimmelreder
Mar 1–6, 2015 | Copper Mountain Resort | Copper Mountain, CO | USA

DNA Replication & Recombination (X3)
Organizers: Simon J. Boulton, Karlene A. Cimprich & Stephen D. Bell
joint with **Genomic Instability & DNA Repair (X4)**
Organizers: Daniel Durocher, Jiri Lukas & Agata Smogorzewska
Mar 1–6, 2015 | Whistler Conference Centre | Whistler, BC | Canada

Hybrid Methods in Structural Biology (C2)
Organizers: Jens Meiler, Patrick Cramer & Ron A. Milligan
Mar 4–8, 2015 | Granlibakken Resort | Tahoe City, CA | USA

Biology of Sirtuins (C3)
Organizers: Raul Mostoslavsky, Shin-ichiro Imai, Marcia C. Haigis & Eric M. Verdin
Mar 8–12, 2015 | Hilton Santa Fe Historic Plaza Hotel | Santa Fe, NM | USA

Dendritic Cells & Macrophages Reunited (C4)
Organizers: Jacques F. Banchereau & Siamon Gordon
Mar 8–13, 2015 | Fairmont The Queen Elizabeth | Montreal, QC | Canada

Deadlines:
- Abstract – Dec 10
- Discounted Registration – Jan 9

Deadlines:
- Abstract – Dec 9
- Discounted Registration – Jan 8

Deadlines:
- Abstract – Dec 8
- Discounted Registration – Jan 7

Deadlines:
- Abstract – Dec 7
- Discounted Registration – Jan 6

Deadlines:
- Abstract – Dec 6
- Discounted Registration – Jan 5

Deadlines:
- Abstract – Dec 5
- Discounted Registration – Jan 4

Deadlines:
- Abstract – Dec 4
- Discounted Registration – Jan 3

Deadlines:
- Abstract – Dec 3
- Discounted Registration – Jan 2

Deadlines:
- Abstract – Dec 2
- Discounted Registration – Jan 1

Deadlines:
- Abstract – Dec 1
- Discounted Registration – Jan 0
Optogenetics (C5)
Organizers: Edward S. Boyden, Klaus M. Hahn & Chandra Tucker
Mar 12–16, 2015 | Westin Downtown Denver | Denver, CO | USA
Deadlines: Abstract – Dec 11; Discounted Registration – Jan 13

Co-Infection: A Global Challenge for Disease Control (C6)
Organizers: Rodrigo Corrêa-Oliveira, David Dunne & Andrea Graham
Mar 15–20, 2015 | Centro de Artes e Convenções (UFOP) | Ouro Preto, MG, Brazil
Deadlines: Abstract – Dec 16; Discounted Registration – Jan 14

Long Noncoding RNAs: From Evolution to Function (C7)
Organizers: Randi J. Hagerman, Mustafa Sahin & Paul J. Hagerman
Mar 16–20, 2015 | Granlibakken Resort | Tahoe City, CA | USA
Deadlines: Abstract – Dec 16; Discounted Registration – Jan 15

HIV Vaccines (X5)
Organizers: Giuseppe Pantaleo, Rafick P. Sekaly & Leonidas Stamatakos
joint with The Golden Anniversary of B Cell Discovery (X6)
Organizers: Patrick C. Wilson, Michael P. Cancro & Anne Durandy
Mar 22–27, 2015 | Fairmont Banff Springs | Banff, AB | Canada
Deadlines: Abstract – Dec 18; Discounted Registration – Jan 21

Pathways of Neurodevelopmental Disorders (C8)
Organizers: Johan Auwerx, Eleftheria Maratos-Flier & Thomas Langer
joint with Liver Metabolism & Nonalcoholic Fatty Liver Disease (NAFLD)(X8)
Organizers: Jay D. Horton, Douglas G. Masheg & Brian N. Finck
Mar 22–27, 2015 | Fairmont Chateau Whistler | Whistler, BC | Canada
Deadlines: Abstract – Dec 18; Discounted Registration – Jan 21

Transcriptional & Epigenetic Influences on Stem Cell States (C9)
Organizers: Thomas P. Zwaka, Rudolf Jaenisch & Joanna Wysocka
Mar 23–28, 2015 | Sheraton Steamboat Resort | Steamboat Springs, CO | USA
Deadlines: Abstract – Dec 19; Discounted Registration – Jan 22

Gram-Negative Resistance (D1)
Organizers: Robert E.W. Hancock & Eric D. Brown
Mar 29–Apr 2, 2015 | Granlibakken Resort | Tahoe City, CA | USA
Deadlines: Scholarship/Discounted Abstract – Dec 1; Abstract – Jan 6; Discounted Registration – Jan 27

Viruses & Human Cancer (D2)
Organizers: Charles R.M. Bangham, Thomas F. Schulz & Paul M. Lieberman
Mar 29–Apr 3, 2015 | Big Sky Resort | Big Sky, MT | USA
Deadlines: Scholarship/Discounted Abstract – Dec 2; Abstract – Jan 6; Discounted Registration – Jan 27

T Cells: Regulation & Effector Function (D3)
Organizers: Alexander Y. Rudensky, Dan R. Littman & Kristin A. Hogquist
Mar 29–Apr 3, 2015 | Snowbird Resort | Snowbird, UT | USA
Deadlines: Scholarship/Discounted Abstract – Dec 2; Abstract – Jan 7; Discounted Registration – Jan 28

DNA Methylation (Z1)
Organizers: Alexander Meissner & Dirk Schübeler
Joint with Epigenomics (Z2)
Organizers: Bing Ren & Daniel Zilberman
Mar 29–Apr 3, 2015 | Keystone Resort | Keystone, CO | USA
Deadlines: Scholarship/Discounted Abstract – Dec 3; Abstract – Jan 8; Discounted Registration – Jan 29

Neural Control of Metabolic Physiology & Diseases (D4)
Organizers: Dongsheng Cai & Martin G. Myers, Jr.
Apr 12–17, 2015 | Snowbird Resort | Snowbird, UT | USA
Deadlines: Scholarship/Discounted Abstract – Dec 4; Abstract – Jan 13; Discounted Registration – Feb 12

Beige & Brown Fat: Basic Biology & Novel Therapeutics (D5)
Organizers: Bruce M. Spiegelman & Sven Enerbäck
Apr 17–22, 2015 | Snowbird Resort | Snowbird, UT | USA
Deadlines: Scholarship/Discounted Abstract – Dec 16; Abstract – Jan 15; Discounted Registration – Feb 18

The Crossroads of Lipid Metabolism & Diabetes (D6)
Organizers: Russell A. DeBoe-Boyd, Sudha Biddinger & Alan D. Attie
Apr 19–24, 2015 | Tivoli Hotel & Congress Center | Copenhagen | Denmark
Deadlines: Scholarship/Discounted Abstract – Dec 17; Abstract – Jan 20; Discounted Registration – Feb 18

Innate Immunity & Determinants of Microbial Pathogenesis (Z3)
Organizers: Robert L. Modlin, Jenny P.Y. Ting & Foo Y. Liew
joint with Mechanisms of Pro-Inflammatory Diseases (Z4)
Organizers: Virginia Pascual, Mark S. Anderson & Daniel Kastner
Apr 19–24, 2015 | Resort at Squaw Creek | Olympic Valley, CA | USA
Deadlines: Scholarship/Discounted Abstract – Dec 18; Abstract – Jan 21; Discounted Registration – Feb 19

The Human Proteome (D7)
Organizers: Matthias Mann, Matthias Uhlen, Catherine E. Costello & Albert J.R. Heck
Apr 24–29, 2015 | Clarion Hotel Sign | Stockholm | Sweden
Deadlines: Scholarship/Discounted Abstract – Dec 22; Abstract – Jan 27; Discounted Registration – Feb 24

Mechanisms of HIV Persistence: Implications for a Cure (E1)
Organizers: Olivier Lambotte, Steven G. Deeks & Guido Silvestri
Apr 26–May 1, 2015 | Boston Park Plaza | Boston, MA | USA
Deadlines: Global Health Travel Award – Nov 25; Scholarship/Discounted Abstract – Dec 22; Abstract – Jan 28; Discounted Registration – Feb 26

The Arthropod Vector: The Controller of Transmission (E2)
Organizers: Serap Aksoy, Stephen K. Wilke & David S. Schneider
May 12–17, 2015 | Sagebrush Inn & Suites | Taos, NM | USA
Deadlines: Scholarship/Discounted Abstract – Jan 10; Abstract – Feb 10; Discounted Registration – Mar 11

Hypoxia: From Basic Mechanisms to Therapeutics (E3)
Organizers: Cormac T. Taylor, M. Celeste Simon, Sean P. Colgan & Roland H. Wenger
May 12–17, 2015 | Royal Dublin Society | Dublin | Ireland
Deadlines: Scholarship/Discounted Abstract – Jan 13; Abstract – Feb 12; Discounted Registration – Mar 12

Hippo Pathway: Signaling, Development & Disease (E4)
Organizers: Fernando D. Camargo, Kun-Liang Guan & Helen McNell
May 17–21, 2015 | Sagebrush Inn & Suites | Taos, NM | USA
Deadlines: Scholarship/Discounted Abstract – Jan 13; Abstract – Feb 13; Discounted Registration – Mar 17

MicroRNAs & Noncoding RNAs in Cancer (E5)
Organizers: Frank J. Slack, Manel Esteller & Lin He
Jun 2–7, 2015 | Keystone Resort | Keystone, CO | USA
Deadlines: Scholarship/Discounted Abstract – Feb 5; Abstract – Mar 5; Discounted Registration – Apr 7

Autophagy (E6)
Organizers: Eric H. Baehrecke & Jayanta Debnath
Jun 19–24, 2015 | Beaver Run Resort | Breckenridge, CO | USA
Deadlines: Scholarship/Discounted Abstract – Feb 17; Abstract – Mar 17; Discounted Registration – Apr 21

Abstracts submitted by the abstract deadline will be considered for short talks. Scholarships are for students/postdoctoral fellows. Scholarship application and discounted abstract deadlines precede meetings by four months, abstract deadlines by three months and discounted registration deadlines by two months. View full, up-to-date meeting programs at www.keystonesymposia.org and then I and the program code (e.g., www.keystonesymposia.org/15A1).
As the amount of information in biology expands dramatically, it becomes increasingly important for textbooks to distill the vast amount of scientific knowledge into concise principles and enduring concepts. As with previous editions, *Molecular Biology of the Cell, Sixth Edition* accomplishes this goal with clear writing and beautiful illustrations. The Sixth Edition has been extensively revised and updated with the latest research in the field of cell biology, and it provides an exceptional framework for teaching and learning.

AAAS is here – Science Funding, Climate Regulation, Human Rights.

Around the world, governments turn to AAAS as an objective, multidisciplinary scientific authority to educate public officials and judicial figures on today’s most pressing issues. And this is just one of the ways that AAAS is committed to advancing science to support a healthy and prosperous world. Join us. Together we can make a difference.

To learn more, visit aaas.org/plusyou/policy
I’m a purist. My work is all about precision, and my samples are precious. There is simply no room for error and no place for substitutes. That’s why I choose the most cited and the most trusted brand of reverse transcriptase.

Go super at lifetechnologies.com/superscript
The American Association for the Advancement of Science gratefully acknowledges individuals who have made substantial contributions to sustain our most timely and important activities.

KENNETH A. COWIN
GREGORY S. FERRISS
STEPHEN AND JANELLE FODOR
RICHARD M. FORESTER
GOLDEN FAMILY
BENJAMIN C. HAMMETT
FRED KAVLI
PAULINE P. LEE
IN MEMORY OF BERNARD S. LEE
ALAN I. & AGNES F. LEshNER
LAWRENCE H. LINDEN
GILBERT S. OMENN & MARTHA A. DARLING
CLAIRE E. PERRY
ELLEN SCHERL HARBUS, MD

XIMENA & DANIEL SESSLER
IN MEMORY OF ANDREW M. SESSLER
RUTH BERNSTEIN & JONATHAN SESSLER
IN MEMORY OF ANDREW M. SESSLER
PHILLIP A. SHARP
DAVID EVANS SHAW
WILLIAM F. WARD

Cross-section of a Corn root stele (Zea mays), a monocot. Dr. James Richardson/Visuals Unlimited, Inc.

AAASTravels

Costa Rica
Discover Tropical Wildlife and Parks!
February 6-15, 2015

Visit Volcan Poas, with an excellent introduction to the fiery history of an active volcano near San Jose; the Monteverde Cloudforest, a world-renowned mountain reserve cloaked in mists; Carara Biological Reserve, beautifully situated on the Pacific Coast; Braulio Carillo, a montane rainforest park with an aerial tram to view the spectacular rainforest canopy; and charming San Jose, the capital city near the mountainous backbone of Costa Rica. $2,995 pp + air.

For a detailed brochure, call (800) 252-4910
All prices are per person twin share + air

Betchart Expeditions Inc.
17050 Montebello Rd, Cupertino, CA 95014
Email: AAASInfo@betchartexpeditions.com
www.betchartexpeditions.com

LAMBDA VF-5
Tunable filter changer

NEW!

Introducing the world’s first filter changer to use tunable thin-film optical filters. The Sutter LAMBDA VF-5 allows you to quickly access any center bandpass from 330 to 800nm in nanometer increments. Building on the VersaChrome filters from Semrock, the LAMBDA VF-5 maintains transmission over the tuning range of each filter.

Easy Wavelength Selection
Wavelength range as wide as 330-800nm
Keypad or computer interface (USB or serial)

Flexible
- Suitable for excitation or emission
- Easily switch between fluorophore combinations
- Optional liquid light guide offers absolute vibration isolation
- Images pass through filters

Thin filter advantage
- High transmission
- Steep spectral edges
- High out-of-band blocking
- Polarization independence (s and p nearly identical)

Join the Conversation!
Twitter is a great way to connect with AAAS members and staff about the issues that matter to you most. Be a part of the discussion while staying up-to-date on the latest news and information about your personal member benefits.

Follow us @AAASmember and join the conversation with #AAAS

SUTTER INSTRUMENT
PHONE: 415.883.0128 | FAX: 415.883.0572
EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM

Member Central
MemberCentral.aaas.org
The Art of Culture: Developing Cell Lines

Immortalized cell lines are critical for biomedical research, but establishing new lines can be tricky and frustrating. Researchers who’ve succeeded at it recommend a combination of old and new tools and techniques. **By Alan Dove**

On February 8, 1951, George Gey of Johns Hopkins University isolated some cells from a cervical cancer biopsy and placed them into a petri dish with some medium. Unlike all of the other cells Gey and his colleagues had tested, these—from a patient named Henrietta Lacks—adapted to their new environment beautifully. Lacks died of her cancer eight months later, but her cells, dubbed HeLa, became the first immortalized cell line, capable of renewing itself in artificial culture indefinitely. In the decades since their isolation, scientists have grown an estimated twenty tons of them.

Meanwhile, researchers have identified numerous ways to transform primary tissues from humans and animals into immortalized cell lines, and now laboratory supply vendors and nonprofit repositories carry hundreds of lines specifically adapted for everything from protein production to virus propagation. Embryonic and induced pluripotent stem cells may get more media attention, but ordinary somatic cell lines still form the backbone of biomedical research.

The selection extends across a zoo of species. “Within our general collection, we actually have more than sixty different species, and some are exotic,” says Fang Tian, lead scientist and head of the cell biology group at the **American Type Culture Collection** (ATCC) in Manassas, Virginia. ATCC currently holds more than three thousand lines. The **Coriell Institute for Medical Research** in Camden, New Jersey maintains several thousand more, with an emphasis on human lines representing specific diseases.

A problem of scales

Even with thousands of cell lines just a click or phone call away, though, scientists may still find the selection inadequate. That’s what happened to Mark Stenglein, a postdoctoral scholar at the **University of California, San Francisco School of Medicine** (UCSF), when he tried to study inclusion body disease (IBD) in snakes.

The project began when a snake enthusiast contacted Joseph DeRisi, Howard Hughes Medical Institute (HHMI) Investigator and professor of biochemistry and biophysics at UCSF and Stenglein’s boss. The serpent fan explained that IBD triggers behavioral changes, followed by wasting, secondary infections, and death, and is a major problem in the pet snake trade. Veterinarians had no idea what caused it. Intrigued, DeRisi and Stenglein decided to see if a virus might be responsible.

Working with snake owners and veterinarians, the team performed metagenomic sequencing and uncovered evidence of arenavirus infections in snakes with IBD. The trouble started when Stenglein tried to grow the new viruses. Common arenavirus-friendly mammalian cells didn’t work. “There were four reptile cell lines total available at the ATCC, so we ordered all of them,” says Stenglein, but the viruses didn’t replicate in any of those lines, either.

Through their new veterinary contacts, Stenglein and DeRisi collected tissues from a boa constrictor named Juliet, which had died of lymphoma. Stenglein then tried numerous isolation techniques to immortalize Juliet’s cells. “It’s sort of one of those multiplication problems, you can start changing conditions and it can get out of control fast,” says Stenglein, adding that he had between fifty and a hundred different plates of cells in the incubator at one time. To keep the problem manageable, he minimized as many variables as he could.

For example, he used only one recipe for the cell culture media: minimal essential medium (MEM)—a liquid solution, originally invented by Harry Eagle, which meets the basic requirements for many cells. These days a wide array of other media have been developed to help cater to specific needs, including sensitive and difficult-to-culture cells and lines from different species.

Stenglein also incubated all of the plates at the same temperature, varying only the cell isolation method. The protocol that finally worked involved simply slicing tissues into pieces with scalpels, then immersing them in trypsin overnight. That eventually yielded two new cell lines, one from Juliet’s kidneys and one from her spleen.

The new lines have now propagated through **continued>**
multiple passages. Using these, the researchers developed a test for the new arenaviruses and used it on snakes with and without IBD. The work showed a strong correlation between arenavirus infection and IBD, suggesting that the viruses may cause the disease.

Stenglein now sees developing new cell lines as simply another laboratory technique that he could use in the future—though he has no immediate plans to do so. “I would only do it if ... I needed it for a project,” he says. However, he urges others to consider creating new lines, especially if they work on a species that isn’t well represented in the big repositories. “It’s not as hard as you might think, it’s worth a try if you are in a situation where your research question would benefit from having a [new] cell line.”

For those studying reptiles, DeRisi’s lab now distributes Juliet’s cells to anyone interested in studying or using them. They did offer them to a repository, but were declined.

Repositories of culture

Indeed, researchers who create other lines from “exotic” species may receive similar responses from repositories, chiefly because of funding. “Previously ATCC did have government funding support, so we took whatever researchers requested ... did cell banking, did cell authentication to make sure the line is what it’s supposed to be, and expanded them and distributed them worldwide,” says Tian. Government funding for the repository ended 20 years ago, though, forcing ATCC to become more selective. Now, the nonprofit organization only adds new lines for which they anticipate high demand and widespread scientific interest.

The Coriell Institute still receives substantial federal funding, but focuses on human and nonhuman primate cells. The institute maintains a trove of several thousand samples that range from umbilical cord blood to clinical isolates from patients with rare genetic diseases.

Besides banking established cell lines, repositories are also at the forefront of creating new ones.

The simplest way to create a new cell line is to modify an existing one, a common strategy when an established line already comes close to meeting the requirements. Cells optimized to grow particular viruses or maximize recombinant protein production often come from such modifications. Establishing an entirely novel cell line can require more exotic techniques. While traditional cut-and-try methods such as

<table>
<thead>
<tr>
<th>Featured Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>www.atcc.org</td>
</tr>
<tr>
<td>Applied Biological Materials</td>
</tr>
<tr>
<td>www.abmgood.com</td>
</tr>
<tr>
<td>Coriell Institute for Medical Research</td>
</tr>
<tr>
<td>www.coriell.org</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>www.fda.gov</td>
</tr>
<tr>
<td>Institute of Virology, University of Bonn Medical Center</td>
</tr>
<tr>
<td>www.virology-bonn.de</td>
</tr>
<tr>
<td>InvivoGen</td>
</tr>
<tr>
<td>www.invivogen.com</td>
</tr>
<tr>
<td>Lonza</td>
</tr>
<tr>
<td>www.lonza.com</td>
</tr>
<tr>
<td>Save Lucy Campaign</td>
</tr>
<tr>
<td>savelucylieberat.org</td>
</tr>
<tr>
<td>University of Maryland School of Medicine</td>
</tr>
<tr>
<td>medschool.umd.edu</td>
</tr>
<tr>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td>www.ucsf.edu</td>
</tr>
</tbody>
</table>

have somewhat restricted ranges, and don’t work on all cell types. That’s why many cell culture experts are now using a gene called human telomerase reverse transcriptase (hTERT) instead of or in addition to viral oncogenes. Originally developed in 1999, the hTERT technique can yield cells that behave like primary cultures but propagate like immortalized lines.

Tumor samples often need little help becoming immortalized, having already acquired the ability to replicate indefinitely. For lymphoblasts, the easiest method is often infecting the cells with Epstein-Barr virus, which naturally transforms the cells but allows them to maintain much of their normal physiology.

Tian advises researchers who think they need a new cell line to start by reviewing the literature and repository databases. A similar line can often be modified to serve the scientist’s needs, which is faster and easier than creating a new line from scratch. If no existing lines seem to come close, the next step is to decide on a general strategy for immortalizing primary cells. “If you want to establish a tumor [line], then a spontaneously established cell line is a big possibility, but if you want to get a non-cancer type normal cell line established, then hTERT ... and viral infection are common tools to use,” says Tian.

Companies such as Applied Biological Materials in Richmond, British Columbia offer complete kits for immortalizing cells with hTERT, with or without additional oncogenes. BioCat GmbH in Heidelberg, Germany also sells established cell lines and reagents for cell immortalization. Alternatively, researchers can send their primary cells directly to BioCat and let the company develop the cell lines.

Regardless of the specific techniques used to create a new line, the usual problems of any type of cell culture can arise, such as microbial contamination. Mycoplasmas are particularly hard to handle, as they can grow unnoticed in a culture and quietly ruin experiments. Testing kits from ATCC,
“Bats are major hosts of maybe the most important virus families regarding airborne transmission, like paramyxoviruses or coronaviruses.”

Lonza, and InvivoGen can identify these cryptic invaders. Preventing contamination is even better, and incubator manufacturers have attempted to facilitate this through improved designs with features such as easier to clean surfaces, automatic decontamination cycles, and integrated air filters.

Going to bat

Though clever techniques can sometimes speed the process, each cell line derivation problem will be unique, as Eric Donaldson discovered a few years ago. As a postdoctoral fellow with Matthew Frieman, assistant professor of microbiology and immunology at the University of Maryland School of Medicine in Baltimore, Maryland, Donaldson was looking for new coronaviruses. Coronaviruses, the family that includes the causes of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), were thought to be common in bats. Unfortunately, these viruses have been hard to isolate from their natural reservoirs.

Donaldson thought a new bat-derived cell line might help. He quickly discovered that bat biologists are more reserved than the snake enthusiasts that Stenglein worked with. “Bat ecologists are very, very protective of bats, so it took a long time to get my foot in the door,” says Donaldson, who is now a virology reviewer for the U.S. Food and Drug Administration in Silver Spring, Maryland. He adds that he had to prove to bat biologists that he was interested in helping the animals rather than destroying them.

Eventually, Donaldson and Frieman established a relationship with the Save Lucy Campaign, a bat conservation program based in Annandale, Virginia. Whenever a bat was struck by a car or otherwise injured beyond saving, Save Lucy volunteers would contact Donaldson, who would then drive to the campaign’s center to harvest tissues from the animal immediately after it died.

Because bats can harbor serious human pathogens, including rabies viruses, the researchers worked with the tissues in a biosafety level (BSL)-2 plus facility with containment cabinets and restricted access. Donaldson used a cell sorter to separate the cells of each tissue, and introduced hTERT and a mouse oncogene called BMI-1 into the cells to try to immortalize them. Most of the experiments, involving multiple tissues from 10 different bats representing four species, failed.

“But when it worked, boy did it work,” says Donaldson. He explains that in one experiment “we seeded primary cells on day one, two to three days later the flask was [full of cells]. We had so many cells by the end of four passages we didn’t know what to do with them.” The team eventually produced three cell lines from three different bat species, and were able to culture novel coronaviruses in the new lines.

Creating new cell lines from three species is impressive, but bats are the most evolutionarily diverse order of mammals, and epidemiologists increasingly suspect that they may be major reservoirs for numerous emerging pathogens. That’s why Isabella Eckerle, staff scientist at the Institute of Virology in the University of Bonn Medical Center in Bonn, Germany, is trying to establish many more bat cell lines.

Initially, Eckerle encountered the same barrier as Donaldson: bat tissue is hard to get. While working on that problem, she began practicing her tissue culture techniques on pig cells, establishing protocols to turn various primary tissues into immortalized cell lines. She also developed a technique for rapidly freezing cells in the field. “That is something I’m really happy about, so we don’t have to go outside and sacrifice bats, but we can connect to already ongoing projects,” says Eckerle.

When she finally got some bat tissue, Eckerle and her colleagues created novel lines from the airway epithelia of two bat species representing the two major suborders, Yangochiroptera and Yinpterochiroptera. “Bats are major hosts of maybe the most important virus families regarding airborne transmission, like paramyxoviruses or coronaviruses, or for example influenza viruses have been found in bats recently,” says Eckerle. After carefully dissecting the tiny tracheae and establishing primary cultures, she used SV40 T antigen to immortalize them. She and her colleagues are now establishing additional cell lines from other bat tissues and species.

Like others in the field, Eckerle agrees that establishing new cell lines can be frustrating, but she argues that the payoff makes it worthwhile: “Because these models are quite new, there are a lot of things you can do with them.”

Alan Dove is a science writer and editor based in Massachusetts.

DOI: 10.1126/science.opms.p1400090
Cell Culture Consumables
New Cell Culture Consumables offer a new dimension of safe, reproducible, and reliable cell culture work. Scientists and technical personnel in the field of cell culture have a strong need for easy, safe, and reliable products with improved handling that help prevent contamination. The latest products from Eppendorf deliver exceptional levels of product purity and security, as well as improved, ergonomic and safe handling of cell cultures and advanced protection against contamination. The new, easy resealable packaging concept complements the products’ unique features and performance. Eppendorf Cell Culture Consumables are made from ultraclear virgin polystyrene, which complies with USP class VI for highest purity. Cell Culture Consumables have a ISO class /GMP class C clean room production standard and a sterility assurance level (SAL) of 10^-6 as well as batch specific third-party quality testing ensuring exceptional product and sample safety. Innovative technologies in Eppendorf Cell Culture Consumables deliver ultimate ease of use.
Eppendorf
For info: 800-645-3050
www.eppendorf.com/ccc

Spheroid Culture Microplates
BrandTech Scientific announces the availability of InertGrade microplates for the cultivation of nonadherent cell lines, spheroids, and stem cells in a 96-well plate format. These polystyrene plates are manufactured in one of the largest, most modern cleanroom facilities for laboratory disposable items in the world. Rather than the more common treatments to enhance the natural hydrophobic characteristics of polystyrene, these new microplates are treated with a proprietary hydrogel. This creates a hydrophobic interface between the surface of the plastic and cellular material to inhibit cell and protein attachment. This unique low-binding microplate surface successfully suppresses the adhesion of a wide variety of adherent cell lines, can enhance the formation and maintenance of uniform spheroid cultures, and can inhibit early differentiation of stem cells or neurospheres. InertGrade 96-well microplates are available with round, flat, or curved bottoms in clear, white, black, and colored with transparent bottoms.
BrandTech Scientific
For info: 888-522-2726
www.brandtech.com

Automated Cell Counter
Life science researchers who want to expand their capabilities beyond traditional cell counting instruments can now do so with the Countess II FL. A next generation, benchtop assay instrument with a modular design that broadens the number of applications on a single platform. While most cell counters on the market have been limited to green and red fluorescent protein (GFP/RFP) channels, the new Countess II FL Automated Cell Counter is a three-channel (brightfield and two optional fluorescence channels) system that uses state-of-the-art optics and image analysis to perform assays for cells in suspension, including cell counting, fluorescent protein expression, apoptosis, cell viability, and cell cycle assays. Designed with flexibility in mind, the Countess II FL can also be configured to use a full range of EVOS light cubes that provide more than 13 fluorescence color options. The instrument can operate with a reusable glass chamber to reduce the cost of consumables.
Thermo Fisher Scientific
For info: 800-678-5599
www.thermofisher.com

Protein Detection System
The SNAP i.d. 2.0 Protein Detection System for Immunohistochemistry (IHC) represents a much-needed advancement in the IHC workflow. The power of IHC lies in its capacity to localize antigens within tissue samples, thereby identifying the cell types and subcellular compartments in which antigens are located. Traditional immunohistochemistry methods may be subject to process variability; for example, the process typically requires a lot of manual slide handling, as well as the use of pap pens and pipettes. The SNAP i.d. 2.0 Protein Detection System addresses these challenges by systemizing the handling of multiple slides. It decreases slide handling time and enables parallel processing of up to 24 slides at once, reducing slide-to-slide process variation without incurring the costs of automation. In addition, the system speeds wash steps and allows antibodies to be recovered and reused, saving researchers valuable time and resources. The system produces robust and consistent staining, without causing tissue degradation or blotchy artifacts.
EMD Millipore
For info: 800-645-5476
www.emdmillipore.com/snap

Imaging Software
Assisting researchers in gaining a deeper understanding of dynamic biological processes, the new cellSens imaging software (version 1.12) ensures the most efficient use of valuable time-lapse experiments and the latest microscopy hardware. Building on the capabilities introduced by Olympus with its unique Graphical Experiment Manager (GEM) interface, cellSens 1.12 allows the user to truly get in touch with their sample. Enabling effortless setup of complex acquisition sequences and protocols, the GEM presents an intuitive method to seamlessly control motorized hardware, delivering outstanding ease and efficiency for advanced live cell imaging applications. In cellSens 1.12, the GEM has further evolved to maximize the efficiency of multicolor z-stacking experiments. Prioritizing the use of fast devices such as piezometric z-axis modules reaches a new level of imaging speed, with the freedom to choose the sequence of motorization movements. Enhancing the efficiency of time-lapse applications, the improved GEM also enables investigations into short-term dynamics and long-term sample evolution side by side.
Olympus
For info: +49-402-3773-5913
www.olympus-europa.com/cellsens

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
This is the start of something big.

Introducing *Science Advances* – the new, online-only, open-access journal from *Science* and AAAS. Find out how you can be among the first authors published at scienceadvances.org.
WHAT DO YOU AND THOMAS EDISON HAVE IN COMMON?

By investing in AAAS you join Thomas Edison and the many distinguished individuals whose vision led to the creation of AAAS and our world-renowned journal, Science, more than 150 years ago.

Like Edison, you can create a legacy that will last well into the future through planned giving to AAAS. By making AAAS a beneficiary of your will, trust, retirement plan, or life insurance policy, you make a strong investment in our ability to advance science in the service of society for years to come.

To discuss your legacy planning, contact Juli Staiano, Director of Development, at (202) 326-6636, or jstaiano@aaas.org, or visit www.aaas.org/1848 for more information.

“I feel great knowing that I will leave behind a legacy that will be channeled through the AAAS. It also means a lot to me to be able to honor my late parents, too.”

–PETER ECKEL
Member, 1848 Society and AAAS Member since 1988
It only took us 125 years to write this book...

www.cellsignal.com/science125

CST Guide: Pathways and Protocols. From the inception of the antibody as a research tool in the 1890s, to the most up-to-date research, applications, and tools, this is your complete resource for cellular research.