Protease Enzymes
The IdeS Protease enables fast, easy, high-performance digestion of immunoglobulin, while the human and yeast protein extracts provide a test material for optimizing mass spectrometry regimes. The protease is efficiently digested in 30 minutes with no optimization. The protease can be used to characterize therapeutic antibody candidates using liquid chromatography/mass spectrometry (LC/MS), and contains a histidine tag for easy removal.

RNA-Binding Protein Immunoprecipitation Kits
Magna Nuclear RNA-binding Protein Immunoprecipitation (RIP) kits are specially designed to allow the discovery and analysis of both coding and noncoding chromatin-associated RNAs. Two versions of the kit are available, enabling users to analyze RNA both strongly and weakly associated with chromatin; one version uses cross-linked chromatin while the other uses native chromatin. Native RIP allows recovery of high-affinity, more direct interactions while the cross-linked method is designed to capture higher molecular weight complexes and more readily trap weaker interacting RNAs. Compared with other kits available to researchers, the Magna Nuclear RIP kits deliver much lower background signals, high signal-to-noise ratios and have been demonstrated to work in RNA-seq to enable NGS-based discovery and profiling. The kits offer flexible and scalable input requirements; RNA can be recovered from as few as 5,000 cells (cross-linked) or 100,000 cells (native).

HPLC Columns
Kinetex EVO C18 columns incorporate a patented organo-silica grafting process that utilizes uniform stabilizing ethane cross-linking to create a unique selectivity and ultimately, pH stability from 1 to 12. Kinetex EVO C18 has the performance advantages of Core-Shell Technology even at extreme low and high pH. This new advancement adds alkaline pH ruggedness and a highly versatile selectivity to the Kinetex core-shell family of high-performance liquid chromatography (HPLC), UHPLC, and preparative LC products. The wide pH 1 to 12 stability and improved peak shape for bases make the Kinetex 5 µm EVO C18 especially ideal for analytical and preparative HPLC methods at a variety of challenging pH levels such as those in open access labs. With the introduction of the 5 µm Kinetex EVO C18 particle, HPLC and preparative HPLC users can utilize 3 µm or better efficiencies and low backpressures to easily replace traditional hybrid materials and run at higher linear flow rates to compress long run times.

Phospho-Specific Polyclonal Antibodies
A custom phospho-specific antibody production service that is both reliable and produces high-quality product. This service includes synthesis of phosphorylated and nonphosphorylated peptides, conjugation to a carrier protein, immunization, serum production, and a two-step affinity purification of the antibodies. To ensure absolute specificity for each phosphorylated amino acid a stringent dot blot testing regime is carried out guaranteeing that for all projects the phospho peptide is preferentially recognized. A complete package of nonphosphorylated and phosphorylated peptides, preimmune sera, and antisera as well as affinity purified phospho-specific and nonphospho antibodies are supplied with each customer order.

Chromatographic Isolation
Accelerated Chromatographic Isolation (ACI) is a new advance converting simple flash purification into a faster and more economical way to isolate pure compounds. Traditional purification taking more than 15 minutes is reduced to 5 minutes; a 250 mg scale laboratory experiment can now be purified in less than 3 minutes on a 10 g column with an ACI-enabled Biotage Isolera flash purification system. It is fully automated, reliable, and lightning fast, able to completely purify 250 mg of sample in less than three minutes; this is quicker than most people take to run the TLC.

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.
New Products

Science 347 (6218), 199.
DOI: 10.1126/science.347.6218.199-a

http://science.sciencemag.org/content/347/6218/199.1

http://www.sciencemag.org/help/reprints-and-permissions