TRANSLATE DISCOVERIES INTO INNOVATIONS

Improve accuracy, reproducibility and confidence in your discovery process

• Late Stage Functionalization – fueled by academic collaborations
• Lab Essentials – optimized portfolio to accelerate discovery
• Innovative Catalysts and Reagents – a market leading pipeline for creating diverse compounds

Rediscover the power of your research
sigma-aldrich.com/translational
#sigmaaldrich

Learn more at ACS Spring, Booth #1216
Take Control with dynamic cell culture.

Biology is so much more than DMEM/FBS, 37 °C, 5% CO₂. It’s easy to program automated changes to culture media, gas and temperature, while tracking cell responses, with the flexible, intuitive CellASIC® ONIX Microfluidic Platform. By taking control of this truly in vivo-like environment, you’ll be able to perform dynamic, time-lapse experiments never before possible.

Watch live cells respond in real time: www.emdmillipore.com/CellASIC
As a U.S. based primary manufacturer of the highest quality detection reagents, Vector Laboratories is able to provide our products to customers in standard, bulk and OEM formats, at low cost directly from our facilities.

Producers of innovative products including: VECTASTAIN® ABC Kits • ImmPRESS™ Enzyme Polymer Reagents • Mouse on Mouse (M.O.M.™) Kits • ImmPACT™ Substrates Avidin/Biotin Systems • Secondary Antibodies • NEUROBIOTIN™ Tracers • Lectins VECTASHIELD® Mounting Media

www.vectorlabs.com

UNITED STATES UNITED KINGDOM CANADA
An open letter to the American research community:

For 102 years Research Corporation for Science Advancement (RCSA) has supported unique, impactful basic research in the physical sciences at our nation’s universities and colleges. Today the level of real federal dollars devoted to basic research is projected to contract, even as the cost of research grows. Within this context RCSA, a private philanthropy, seeks to continue to make a difference. Therefore, during the decade ahead the Foundation and its partners will focus on expanding and improving RCSA’s two major programs:

Cottrell Scholars This program is expanded to include opportunities for early career Chemistry, Physics and Astronomy faculty at primarily undergraduate institutions (PUIs) as well as the traditional Cottrell Scholar beneficiaries from research universities. Cottrell Scholars are provided with unique opportunities to help them launch and establish truly outstanding careers. The size of the award is increased 33 percent to $100,000.

In addition to receiving financial support for research, Cottrell Scholars belong to a community whose members help each other to develop the skills and relationships necessary to become academic leaders. To strengthen this aspect of the program, RCSA announces two new awards:

- **Competitive Career Advancement Awards** of $25,000 will be presented at the Cottrell Scholars Conference held annually in Tucson, Arizona.
- **Cottrell Fellows Award**, $250,000. This is an annual competition for Cottrell Scholars who achieve tenure. It is meant to celebrate outstanding, forward-looking, creative ideas in basic research.

Since the inception of the program in 1994, RCSA has maintained its commitment to Cottrell Scholars throughout their careers. The Foundation continues to draw on senior members of the Cottrell Scholar family to serve as mentors for the next generation.

Scialog Supporting high-risk basic research on complex problems challenging society, Scialog seeks to stimulate real progress. Over the past five years, the Scialog (science+dialog) approach has proven highly effective at encouraging early career researchers to forge new collaborations across varied disciplines. Subsequently many of these collaborations, which have been focused on increasing efficiencies in solar energy conversion, have attracted federal support.

A second Scialog round, Molecules Come to Life, co-sponsored by the Gordon and Betty Moore Foundation, begins in March. It is projected to be a two-year initiative involving early career scientists from physics, biology and related disciplines interested in pursuing collaborative, high-risk discovery research on untested ideas in physical cell biology. This initiative aims to catalyze the development of a community in which theory informs experiment, with both working together to achieve understanding of fundamental cellular processes.

The challenge for Scialog is to identify timely and scientifically critical topics for future rounds. RCSA is asking all members of its 35,000-strong community of researchers, academic and science administrators to propose and discuss Scialog topics for the coming decade. Begin the conversation by contacting us at email@scialog.org.

As it has for the past century, Research Corporation for Science Advancement continues to fund innovative research as well as to nurture collaboration, community and superb leadership skills among America’s physical scientists.

Sincerely,

Robert N. Shelton
President
Research Corporation for Science Advancement
NEW! TransIT-X2® Dynamic Delivery System

A Transfection Breakthrough

Achieve superior transfections with an advanced non-liposomal, polymeric system that efficiently delivers both DNA and/or RNA out of the endosome and into the cytoplasm, overcoming a critical barrier to nucleic acid delivery.

The TransIT-X2® Dynamic Delivery System gives researchers:

- **Efficiency**—superior broad spectrum transfection
- **Delivery**—independent or simultaneous delivery of plasmid DNA and siRNA
- **Technology**—novel, non-liposomal, polymeric technology

ADVANCE YOUR TRANSFECTIONS.

Request a FREE SAMPLE of TransIT-X2® Dynamic Delivery System.

Visit www.mirusbio.com,
call 888.530.0801 (U.S. only) or +1.608.441.2852 (outside the U.S.)

www.mirusbio.com

©2015 All rights reserved Mirus Bio LLC. TransIT-X2 is a registered trademark of Mirus Bio LLC.
IS JOINTLY AWARDED TO

WINFRIED DENK
MAX PLANCK INSTITUTE OF NEUROBIOLOGY, GERMANY

ARTHUR KONNERTH
TECHNICAL UNIVERSITY MUNICH, GERMANY

KAREL SVOBODA
JANELIA RESEARCH CAMPUS, HHMI, USA

DAVID W. TANK
PRINCETON UNIVERSITY, USA

‘for the invention, refinement and use of two-photon microscopy to provide detailed, dynamic images of activity in individual nerve cells, dendrites and synapses, thereby transforming the study of development, plasticity and functional circuitry of the brain.

THE PRIZE WILL BE AWARDED 7 MAY 2015 IN COPENHAGEN

ALL NOMINATIONS WERE REVIEWED BY THE DISTINGUISHED SELECTION COMMITTEE:

HUDA AKIL, USA
ANDERS BJÖRLUND, SWEDEN, VICE-CHAIRMAN
COLIN BLAKEMORE, UNITED KINGDOM, CHAIRMAN
JOSEPH T. COYLE, USA
FRED H. GAGE, USA
FLORIAN HOLSBÖR, GERMANY
RANGA R. KRISHNAN, SINGAPORE
PHILIP SCHELTENS, THE NETHERLANDS

The Brain Prize recognizes and rewards outstanding contributions to European neuroscience, from basic to clinical
2014 Winner
Eiman Azim, Ph.D.
Columbia University
For research on skilled limb movement

Call for Entries

Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international award which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. To be eligible, you must be 35 years of age or younger.

You could be next to win this prize and to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply!

Learn more at: www.eppendorf.com/prize
One of Asia’s most enchanting lands set on the rugged flanks of the Himalayas, Nepal offers an unsurpassed wealth of ecological and cultural diversity. Explore phenomenal highlights in the Kathmandu Valley, tranquil landscapes of Pokhara, the birthplace of Buddha in Lumbini, wildlife in Chitwan National Park & more! $4,895 pp + air

For a detailed brochure, call (800) 252-4910

All prices are per person twin share + air

Introducing the world’s first filter changer to use tunable thin-film optical filters. The Sutter LAMBDA VF-5 allows you to quickly access any center bandpass from 330 to 800nm in nanometer increments. Building on the VersaChrome® filters from Semrock®, the LAMBDA VF-5 maintains transmission over the tuning range of each filter.

Easy Wavelength Selection
Wavelength range as wide as 330-800nm
Keypad or computer interface (USB or serial)

Flexible
Suitable for excitation or emission
Easily switch between fluorophore combinations
Optional liquid light guide offers absolute vibration isolation
Images pass through filters

Thin filter advantage
High transmission
Steep spectral edges
High out-of-band blocking
Polarization independence (s and p nearly identical)
Impress Yourself

The new Eppendorf Cell Culture Consumables

The all new product line of Eppendorf Cell Culture Consumables will truly delight your cells. Its outstanding design, reliability and purity is based on more than 50 years of experience. Products created by experts, developed for perfectionists. Impress yourself!

> Unsurpassed quality, clarity, purity and sterility, providing reliable cell culture conditions
> Significantly improved design for more safety and consistency
> Maximum safety and confidence during storage and transportation

www.eppendorf.com/ccc
Disease Modeling with Patient-Specific iPES Cells

Whether in mice or macaques, disease modeling traditionally has been a tedious and expensive affair, not to mention unreliable, as mutations that are crippling in humans could have negligible impacts in animals, and vice versa. As drug development often requires preclinical animal studies, that disconnect has had real implications for the pharmaceuticals industry, both in money and missed opportunities. Today, researchers increasingly are migrating their models from the mouse house to the culture room. Armed with induced pluripotent stem cells made from patient cells, these investigators are probing everything from basic biology and disease etiology to drug discovery and cell therapeutics. **By Jeffrey M. Perkel**

In the nine years since Shinya Yamanaka first described induced pluripotent stem (iPES) cells, they have proven to be extraordinarily powerful research tools. Most obviously, they provide an ethically attractive alternative to embryonic stem (ES) cells, from which researchers theoretically can derive any cell type in the body. “An iPES cell and an ES cell are functionally equivalent,” says Emile Nuwaysir, chief operations officer at **Cellular Dynamics International** (CDI). But they are so much more than that.

For one thing, says Nuwaysir, they provide much-needed genetic diversity. Traditionally, researchers have little opportunity to test their models or therapeutics before initiating clinical trials, at which point projects all too often fall apart. Using iPES cells, however, researchers are limited only by their ability to acquire some noninvasive tissue samples, like a blood draw or skin punch, or the lines derived therefrom.

But it’s the iPES cells made from patient samples that truly expose the technology’s power. By recapitulating the growth and differentiation of those patient cells in a dish, researchers can investigate how mutations impact development, identify critical signaling pathways, and test potential pharmaceuticals—all without biopsy or animal models. “You can take a patient, … take their skin, [reprogram the cells in it], and then attempt to replay the disease,” says Clive Svendsen, director of the Regenerative Medicine Institute at **Cedars Sinai Medical Center** in Los Angeles. Researchers can even replay those diseases in cell types that otherwise are difficult if not impossible to obtain, simply by growing them from scratch. Svendsen notes, for instance, that “neurons are almost impossible to get from human tissues.” By using patient-specific iPES cells, “for the very first time, we’re able to interrogate neurons from Huntington’s disease … [and] Lou Gehrig’s disease, in the dish.”

Columbia University Medical Center ophthalmologist Stephen Tsang calls patient-specific iPES cells “a patient-in-a-dish.” In one study, Tsang generated them from two individuals with retinitis pigmentosa (RP), a form of inherited blindness affecting 1.5 million people worldwide. RP has multiple genetic sources, including a gene of unknown function called membrane frizzled-related protein (MFRP). Tsang’s study demonstrated that MFRP mutations lead to defects in actin organization, apical microvilli, and “leaky” cell-cell junctions—effects that could be reversed, both in patient cells and in mice, by delivering a wild-type copy of the gene via gene-therapy vectors. In effect, says Tsang, the study provided his team a budget-conscious way to test-drive its vectors. “It’s more cost-efficient to do testing of your viral vectors in culture than doing it in vivo,” he explains.

Cell therapeutics

Researchers use patient-specific iPES cells to drive three primary applications: basic biology, drug discovery, and cellular therapeutics. The former two applications are most widespread to date, but cell therapeutics are advancing, too. In 2013, Japanese researchers launched the world’s first clinical trial of a cellular therapeutic derived from iPES cells. Led by Masayo Takahashi at the **RIKEN Center for Developmental Biology**, the trial targets age-related macular degeneration (AMD), differentiating iPES cells from patients into retinal pigment epithelium (RPE), the cell layer underneath the retina that dies in the disease. Six patients are enrolled in the trial, the first of which underwent transplantation in September 2014.

The advantage of iPES cells for cell therapeutics is immune compatibility. Because the transplanted cells are derived from the patient’s own cells, no immunosuppression should be required—at least theoretically. “We don’t know that for sure yet,” says Dennis Clegg, codirector of the Center for Stem Cell Biology and Engineering at the **University of California, Santa Barbara**, “but there are at least a couple of experiments in mouse model systems that suggest that that’s the case.”

Clegg is working with David Gamm, director of the **McPherson Eye Research Institute** at the University of...
Wisconsin to develop strategies to differentiate iPS cells into RPE and photoreceptor cells for transplantation into patients with AMD.

The former cells are relatively simple: RPE proliferate easily, grow as a sheet, and “are used to taking a beating,” Gamm says. Photoreceptors, in contrast, “are kind of the divas of the retina.”

Photoreceptors have a required physical orientation, and they must form synaptic connections to function. They also are post-mitotic, Gamm notes, and fragile and difficult to purify to homogeneity. Once transplanted—and it isn’t yet clear which developmental stage would be best—the cells must integrate into preformed retinal neural circuitry, something cells never normally do. As Gamm puts it, the cells are “being asked to mature on their own, without the normal cues that would normally be there, and then make connections with cells that may not be too happy to begin with.”

Despite these difficulties, researchers are advancing such programs for eye and other disorders. Yet some say it is neither practical nor cost-effective to create, differentiate, and quality control iPS cells on demand. Instead, they advocate assembling banks of HLA-matched iPS cells—at least for some applications. It depends on the speed of disease progression and age of onset, says Joseph Wu, director of the Stanford Cardiovascular Institute. For a child with juvenile diabetes and a long life ahead, for instance, autologous cells could represent a sound investment, Wu says. “On the other hand, if you have an 80-year-old patient who has a heart attack, it probably makes less sense to create a line just for him or her.” Besides, “the cells are needed more urgently in this situation,” he adds.

The required size of such banks varies with a population’s genetic variation. By one estimate, 150 lines could match 93% of the U.K. population, whereas 50 lines would match 90.7% of Japanese (scim.ag/15LyY8). In the United States, CDI has recruited five donors for its bank, and two lines have been stored, Nuwaysir says. “Between those two donors, you have a match to 18% or more of the U.S. population.”

Technical considerations
Yamanaka’s original iPS cell study used lentiviral expression vectors to initiate cellular reprogramming. But as lentiviruses integrate their genetic material into the host genome, they can complicate downstream clinical applications.

Today, researchers have several alternatives. For a recent study into the pathophysiology of Niemann–Pick type C, a lysosomal storage disease, Rudolf Jaenisch, professor of biology at the Massachusetts Institute of Technology, used a Cre- excisable, doxycycline-inducible lentiviral expression system. More recently, his team favors mRNA-based reprogramming, a method that avoids genomic integration. Other RNA-based strategies include a self-replicating RNA developed by Steven Dowdy at the University of California, San Diego (and commercialized by both EMD Millipore and Stemgent) and Sendai virus, available from Life Technologies/Thermo Fisher Scientific.

iPS cells can also be made without nucleic acid initiators.

Lisa Ellerby at the Buck Institute for Research on Aging reprograms her cells by delivering purified transcription factors, a strategy that, like mRNA-based reprogramming, has been commercialized by Stemgent. In 2013, researchers in China demonstrated the ability to make iPS cells using just seven small molecules, several of which are available from STEMCELL Technologies.

At CDI, which has been awarded some $16 million from the California Institute for Regenerative Medicine to create 9,000 iPS cell lines representing 11 disease areas, iPS cells are made using episomal vectors, basically DNA plasmids that behave like eukaryotic chromosomes, Nuwaysir explains. “They have an origin of replication, so they replicate once per cell cycle like a mini-chromosome, but they’re relatively inefficient and lost over time,” he says, meaning by the time the cells are reprogrammed, the plasmids are long gone, leaving no genetic footprint.

Those cells will be banked at the Corell Institute for Medical Research. But CDI, Nuwaysir says, “is focused on using iPS cells as a platform for the manufacture of terminally differentiated cells, and the use of those cells from research to preclinical applications.” The company has developed protocols to reliably differentiate human iPS cells into 10 cell types, he says, including cardiomyocytes, dopaminergic neurons, and skeletal myoblasts, all of which are available under the company’s iCell brand.

Researchers who wish to differentiate their own cells can purchase preformulated differentiation media for select cell types from companies such as STEMCELL Technologies and Thermo Fisher Scientific. For most cell types, though, researchers are on their own.

Rohit Kulkarni, senior investigator at the Joslin Diabetes Center in Boston, for instance, uses patient-specific iPS cells to study the pathophysiology of diabetes and screen for therapeutics. But first, he’ll have to figure out how to turn those cells into insulin-producing beta cells, something that nobody has yet gotten exactly right, he says.

A true beta cell has distinctive anatomic, signaling, and secretory characteristics, Kulkarni explains, and iPS-derived cells often fall short of the mark. Thus, he calls them “beta-like.”
Groups led by Douglas Melton at Harvard University and Timothy Kieffer at the University of British Columbia have had some success on that front, however. Kieffer described a seven-step protocol that could turn an IPS cell into what he called S7 cells in about six weeks. These cells, he writes in a recent publication, are similar to beta cells “but also [exhibit] notable differences,” including in the kinetics of glucose response. Nevertheless, they reversed diabetes in a mouse model of the disease. Melton’s team reported a 34-day, six-step method of its own for “large-scale production of functional human β cells from [human pluripotent stem cells] in vitro.”

Because each cell line represents an individual with a distinct genetic background, comparing phenotypes across lines can be complicated. “You have to ask yourself, is [the phenotype] due to the variation you have anyway between different IPS cells … or is it due to the disease-relevant mutation you want to study,” Jaenisch says.

Increasingly, researchers address this problem using so-called isogenic controls—cell lines that differ by a single mutation. Typically, researchers use gene-editing tools, such as CRISPR/Cas9, to either repair or insert a key mutation in a cell line. Then, by comparing the modified line against the parental line, “you can compare apples with apples,” Jaenisch explains. His team has applied this approach to Parkinson’s disease, identifying subtle differences between normal and mutant cells, as well as pharmaceuticals that could negate those differences.

Going 3-D

While researchers often can drive cells towards their desired endpoint, they often stumble near the goal line. “What we get from IPS are very immature cells, whether it’s an islet cell or a heart cell or a neuron,” says Svendsen. “They don’t seem to mature to the extent they mature in the human body.”

For instance, it takes 90 days to turn IPS cells into RPE, Tsang says, and 200 days to make photoreceptors. Yet even then, the cells aren’t quite right: instead of hyperpolarizing in response to light, most are nonresponsive, or even depolarize.

In part, that could be a function of cellular age itself—cells may need to physically age to better mimic adult-onset diseases. (“Maybe if we grow [photoreceptors] for 300 days, then they’ll be right,” Tsang quips.) But, it also could be because the cells are maturing not in the human body, with all its environmental cues, but in 2-D sheets on plastic dishes.

Likewise, James Wells, director of the Pluripotent Stem Cell Facility at the Cincinnati Children’s Hospital Medical Center, has turned ES and IPS cells into gastric organoids (i.e., “mini-stomachs”) by delivering a precise set of growth factors in a defined sequence that models human development. “We’ve identified signaling pathways that we think are used in the developing embryo to induce this transition from two to three dimensions,” Wells explains. The result is a “primitive gut tube,” from which other gastrointestinal organs arise. Using that system, his team was able, among other things, to model Helicobacter pylori infection.

Wells now is extending the work to iPS cells from patients with such gastrointestinal maladies as cystic fibrosis, malabsorption syndromes, and Hirschsprung’s disease. “We can actually study embryonic development in a dish and find out what goes wrong developmentally in these congenital syndromes.” And at the end of the day, he adds, “it will also allow us in the future to correct the genetic defect and then generate healthy tissue.”

But don’t look for artificial stomachs any time soon, he says. Though researchers have had success generating relatively simple structures in a dish, the stomach and intestines are far more complex, with vasculature, neural networks, absorptive and secretory cells, and so on. Such structures could require “a Manhattan Project-level of investment in bioengineering [and] tissue engineering.”

It will take years to bridge that gap, if ever. But considering how far the research community has already come since 2006, anything is possible. Says Wells, “The therapeutic use of pluripotent stem cells is no longer science fiction. It’s current reality.”

Jeffrey M. Perkel is a freelance science writer based in Pocatello, Idaho.

DOI: 10.1126/science.opms.p1500092
Human Class II MHC Monomer Reagents
ProM2 is a range of Human Class II MHC monomer reagents for tetramer analyses in the study of CD4+ T cell immune responses. ProM2 Class II MHC Monomers are pre-biotinylated and can be readily made into MHC tetramers that allow the detection of single antigen-specific CD4+ T cells accurately by flow cytometry. Class II tetramers made from ProM2 monomers can also be used to separate cells for culture, expansion, and further study. ProM2 Class II MHC monomer reagents are supported by Prolimmune’s expert customer service and application support, helping new users in particular to establish and optimize robust protocols in their own laboratories. The class II reagent offering complements Prolimmune’s extensive range of services for evaluating CD4+ T cell responses, including Prolimmune REVEAL MHC peptide binding assays, CD4+ T cell and DC T cell proliferation assays, and standard immune monitoring services through ELISPOT and flow cytometry based assays.

Prolimmune
For info: 888-505-7765
www.prolimmune.com

Mitochondria/Metabolism Assays
The new range of 96- and 384-well phosphorescence- and fluorescence-based assays enable direct real-time analysis of mitochondrial respiration (MitoXpress Xtra), glycolysis (pH-Xtra), and intracellular oxygen concentration (MitoXpress Intra)—providing the perfect toolkit for monitoring bioenergetics, metabolism, Warburg, and mitochondrial function & toxicity. MitoXpress Xtra—an oxygen consumption assay (high-sensitivity method)—is a convenient fluorescence-based, high throughput approach to the direct real-time analysis of mitochondrial oxygen consumption rate. The easy-to-use assays measure oxygen consumption of isolated mitochondria, cell populations, small organisms, tissues, and enzymes. pH-Xtra Glycolysis Assay is a fluorescence-based assay that measures extracellular acidification. The assay detects changes in extracellular pH caused by the acid extrusion of either suspension or adherent cells. This allows convenient plate based analysis of glycolytic flux and can be used to monitor alterations in glucose metabolism and to confirm mitochondrial dysfunction.

AMS Biotechnology
For info: +44-(0)-1235-828200
www.amsbio.com

NFκB Translocation Assay
The Amnis NFκB Translocation kit allows researchers to better study the nuclear translocation of NFκB, a transcription factor that plays a central role in regulating key mammalian cell processes, including proliferation, inflammation, immune, and stress responses. The new kit uses imaging flow cytometry to obtain statistically significant quantitative assessment of NFκB translocation as well as visual identification of the translocation at a single-cell level. The optimized kit, which works with cultured cell lines and whole blood cells, conveniently contains directly-conjugated anti-Human NFκB monoclonal antibody, 7-AAD dye, and required buffers. Using the dedicated Nuclear Localization Wizard in the IDEAS software, NFκB translocation can then be studied and quantified in an objective, statistically robust manner. The kit is designed for use with the Amnis ImageStreamX Mark II and the Amnis FlowSight imaging flow cytometers, systems that combine the quantitative power of flow cytometry with the spatial information provided by microscopy.

EMD Millipore
For info: 800-221-1975
www.emdmillipore.com/amnis

Cryopreservation Solution
PRIME-XV FreezIS DMSO-Free is a chemically defined cryopreservation solution for human mesenchymal stem/stromal cells (MSCs) free of dimethyl sulfoxide (DMSO) and animal-derived components. Amid growing concerns that DMSO may compromise the potency of MSCs, offering an effective DMSO-free cryoprotectant is an important addition to PRIME-XV product line. Researchers can now characterize cells in DMSO-free environments during basic and translational research, which may add valuable insight downstream and facilitate scale-up. PRIME-XV FreezIS DMSO-Free maintains the potency of MSCs throughout cryopreservation while sustaining comparable cell viability as solutions containing 10% DMSO. For applications where the effects of DMSO are not as critical, PRIME-XV FreezIS is offered as a 10% DMSO-containing, protein-free, chemically defined cryopreservation solution for a variety of cell types. Both cryopreservation solutions join the PRIME-XV line of cell therapy products, which are designed to offer the highest quality and performance for the culture of human stem cells and primary cells.

Irvine Scientific
For info: 800-577-6097
www.irvinesci.com/cell-therapy

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Will you be in Stockholm this December?
(If you have a recent PhD you could be.)

Stockholm in the second week of December is a special place. The city is alive with excitement as it welcomes and celebrates the new Nobel Laureates at the annual Nobel Prize ceremony.

If you are a recent PhD graduate you could be here too, and receive a rather special prize yourself.

The journal *Science* & SciLifeLab have established The *Science* & SciLifeLab Prize for Young Scientists, to recognize and reward excellence in PhD research and support young scientists at the start of their careers. It’s about bright minds, bright ideas and bright futures.

Four winners will be selected for this international award. They will have their essays published in the journal *Science* and share a new total of 60,000 USD in prize money. The winners will be awarded in Stockholm, in December, and take part in a unique week of events including meeting leading scientists in their fields.

“The last couple of days have been exhilarating. It has been an experience of a lifetime. Stockholm is a wonderful city and the Award winning ceremony exceeds my wildest dreams.”
–Dr. Dan Dominissini, 2014 Prize Winner

Who knows, The *Science* & SciLifeLab Prize for Young Scientists could be a major stepping stone in your career and hopefully one day, during Nobel week, you could be visiting Stockholm in December once again.

The 2015 Prize is now open. The deadline for submissions is August 1, 2015.
Enter today: www.sciencemag.org/scilifelabprize

The 2015 Prize categories are:
- Cell and Molecular Biology
- Ecology and Environment
- Genomics and Proteomics
- Translational Medicine

For over 130 years the journal *Science* has been the world’s leading journal of original scientific research, global news and commentary.

SciLifeLab is a collaboration among four universities in Stockholm and Uppsala, Sweden, and is a national center for molecular biosciences with focus on health and environmental research.

This prize is made possible with the kind support of the Knut and Alice Wallenberg Foundation.
GROUNDBREAKING RESEARCH AND EDUCATION INITIATIVE TO ESTABLISH COLLABORATIVE DEGREE PROGRAMS

INITIATIVE WILL HELP CURE DISEASES, DEVELOP DRUGS, EDUCATE STUDENTS AND GENERATE JOBS

One of Florida’s Leading Public Universities and Two of the World’s Premier Research Institutions Build on Existing Relationship to Further Scientific Discovery

Florida Atlantic University, the Max Planck Florida Institute for Neuroscience, and The Scripps Research Institute will allow students to work alongside some of the world’s leading scientific researchers.

FAU, Max Planck and Scripps will collaborate to develop premier STEM programs – Science, Technology, Engineering, Math – and combine FAU Jupiter’s existing strengths in STEM areas, with support from the arts, to create a leading STEAM initiative.

Florida Atlantic University
www.fau.edu

Max Planck Florida Institute for Neuroscience
www.maxplanckflorida.org

Scripps Florida
The Scripps Research Institute
www.scripps.edu/florida
Peer reviewed technology.

Need exosomes? SBI’s patented ExoQuick technology enables high-throughput, scalable, quantitative isolation of exosomes without ultracentrifugation from any biofluid. Study these important extracellular signaling vesicles reliably with ExoQuick from as little as 100 µl of sample.

- Simple protocol to isolate exosomes in as little as 30 minutes
- Works with serum, media, urine, saliva, ascites fluid, CSF and more
- Compatible with miRNA profiling, NGS and Mass Spec analyses
- ExoQuick exosomes are intact and bioactive for functional studies

SBI is the only vendor to offer reagents and kits that support all aspects of exosome research—covering isolation, detection, biomarker discovery, and even exosome engineering. With a comprehensive set of tools and services to accelerate the study of exosomes, SBI puts the power of exosomes into researchers’ hands.

SEE TOP CITATIONS & REQUEST FREE TEST KITS:
www.systembio.com/go-exoquick