WHO WILL BE THE NEXT PRIZE WINNER?

We are now calling for recommendations for the 2015 International Cosmos Prize!

International Cosmos Prize is awarded for excellent research and work that contributes to the development of the concept of Expo '90, “The Harmonious Coexistence between Nature and Mankind”.

The Prize is an annual academic prize presented by the Expo '90 Foundation in Osaka, Japan. The monetary prize is 40 million yen.

If you have a candidate whom you would like to recommend, please e-mail us at the address below. We will send you a recommendation form (in Microsoft Word). The deadline for recommendations is April 15.

E-mail: rec-cosmos@expo-cosmos.or.jp
Now in its 15th year, the Bettencourt Schueller Foundation “Prix Coups d’élan pour la recherche française” has been awarded to four top-performing French laboratories. The prize rewards teams specifically chosen for the promising nature of their research programs. It enables them to optimize their infrastructure (construction / renovation of their premises, the purchasing of new equipment) and to receive practical assistance when required. From the year 2000 onwards, 50 research laboratories, from both the Inserm (French National Institute of Health and Medical Research) and the CNRS (National Center for Scientific Research), have received € 250,000 each. As a direct result, over 500 researchers have been able to benefit from optimal physical working conditions.

Established in 1987 as a public interest foundation, the Bettencourt Schueller Foundation was set up by Liliane, André Bettencourt and their daughter Françoise Bettencourt Meyers, in memory of Eugène Schueller, a renowned researcher and chemist. Its mission is to “take talent to the top”, in order to contribute to a stronger French society and boost France’s influence on the international stage. This mission is focused on three main areas: life sciences, the arts and the promotion of an inclusive society. Driven by strong convictions, the Foundation’s approach and actions serve the common good, thus demonstrating a firm commitment to social responsibility.

Chantal Abergel
Giant viruses: Revisiting the concept of virus in the giant virus era
STRUCTURAL AND GENOMIC INFORMATION LABORATORY, MARSEILLE CNRS / AIX-MARSEILLE UNIVERSITY FRANCE

Valentina Emiliani
Exploring in vivo brain functioning by optogenetic and wavefront shaping
NEUROPHOTONICS LABORATORY, PARIS CNRS / PARIS DESCARTES UNIVERSITY FRANCE

Frédéric Saudou
Exploring neuronal mechanisms of Huntington disease
GRENOBLE INSTITUTE OF NEUROSCIENCE INSERM / JOSEPH FOURIER UNIVERSITY / UNIVERSITY HOSPITAL CENTER OF GRENOBLE (CHUG) FRANCE

Manuel Théry
Stem Cell Architecture (STAR)
SAINT-LOUIS HOSPITAL, PARIS INSERM / THE FRENCH ALTERNATIVE ENERGIES AND ATOMIC ENERGY COMMISSION (CEA) FRANCE
Are you an academic researcher in Europe or North America? Do you have a drug discovery concept you’re eager to explore?

The Discovery Fast Track Challenge could be just what you need.

Tell us about your idea. Our expert judges will select up to 12 researchers to win a collaboration with GSK. You’ll work side-by-side with GSK scientists, discovering active compounds using our high-throughput screening capabilities and extensive compound library. In short, you and your concept will be on the fast track to success.

Submissions are being accepted March 23 - April 24.

Enter today at gsk.com/discoveryfasttrack
Seven leaders who have changed the world of biomedical science

Dr. Lewis C. Cantley
Director, Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital
CANADA GAIRDNER INTERNATIONAL AWARD
Discovered a growth signaling molecule called phosphoinositide 3-kinase (PI3K) that is leading to treatments for cancer and diabetes.

Dr. Lynne E. Maquat
Director, Center for RNA Biology, University of Rochester School of Medicine and Dentistry
CANADA GAIRDNER INTERNATIONAL AWARD
Discovered and elucidated in humans Non-sense-Mediated mRNA Decay (NMD), which is a quality-control mechanism that detects many disease-associated mRNAs, such as in cystic fibrosis and Duchene muscular dystrophy, and also mistakes routinely made in our cells to derail the production of unwanted proteins that initiate disease. NMD is also regulated by our cells to better adapt to changing environmental conditions.

Dr. Shimon Sakaguchi
Vice Director, Immunology Frontier Research Center, Osaka University
CANADA GAILDNER INTERNATIONAL AWARD
Discovered regulatory T (Treg) cells which help maintain order in the immune system. He demonstrated that increasing the number of Treg cells can prevent and treat autoimmune diseases and suppressing Treg cells has applications in cancer treatment.

Dr. Janet Rossant
Chief of Research, The Hospital for Sick Children (SickKids)
CANADA GAILDNER WIGHTMAN AWARD
Made major scientific contributions to developmental biology and has exceptional international leadership in stem cell biology and policy-making, and in advancing research programs for children’s illnesses.

Dr. Michael N. Hall
Professor, Biozentrum, University of Basel
CANADA GAILDNER INTERNATIONAL AWARD
Discovered the protein “target of rapamycin” (TOR) and its central role in cell growth control. Insights into TOR signaling pathways have led to new strategies for the treatment of cancer, diabetes, obesity, and cardiovascular disease.

Dr. Yoshinori Ohsumi
Honorary Professor of Tokyo Institute of Technology (Tokyo Tech)
CANADA GAILDNER INTERNATIONAL AWARD
First to visually observe the function of autophagy (self-eating), whereby cells recycle nutrients and clean up the garbage and invaders within them keeping healthy cells. This discovery may aid in future developments to treat Alzheimer’s, cancer, and many other diseases.

Dr. Peter Piot
Director, London School of Hygiene & Tropical Medicine
CANADA GAILDNER GLOBAL HEALTH AWARD
Co-discovered the Ebola virus and also made major contributions to HIV/AIDS research, especially in Africa. He played an integral role in bringing the AIDS epidemic to the forefront of global attention, raising international commitments to its funding, control and treatment.

The Canada Gairdner Award winners for 2015

Find out more about the work of the Gairdner Foundation and this year’s winners at www.gairdner.org
Impress Yourself

The new Eppendorf Cell Culture Consumables

The all new product line of Eppendorf Cell Culture Consumables will truly delight your cells. Its outstanding design, reliability and purity is based on more than 50 years of experience. Products created by experts, developed for perfectionists. Impress yourself!

> Unsurpassed quality, clarity, purity and sterility, providing reliable cell culture conditions
> Significantly improved design for more safety and consistency
> Maximum safety and confidence during storage and transportation

www.eppendorf.com/ccc
EXCEPTIONAL RESEARCH SHOULD HAVE NO LIMITS.

Submit your research to ACS Central Science—a new, multidisciplinary, open access journal that presents groundbreaking advances in the world of chemistry and beyond.

pubs.acs.org/centralscience
Join the Conversation!

Twitter is a great way to connect with AAAS members and staff about the issues that matter to you most. Be a part of the discussion while staying up-to-date on the latest news and information about your personal member benefits.

Follow us @AAASmember and join the conversation with #AAAS

MemberCentral MemberCentral.aaas.org

Put your career on the road to success.
And put an end to diabetes.

We’re looking to put an end to diabetes’ deadly run. To do that, we’re looking for a new generation of brilliant minds, regardless of their current field of study, to accelerate new breakthroughs. Now in its third year, Pathway to Stop Diabetes® is providing five-to seven-year grants of $1.625 million, along with the freedom, autonomy, professional mentoring and collaborative opportunities to help those minds succeed beyond their wildest imagination. Learn more about Pathway today. Your career — and millions of lives — can’t wait.

Applications by nomination only. Deadline: July 1, 2015.
Find out more at diabetes.org/pathway
DOES YOUR LAB SEEK TO UNDERSTAND MECHANISMS OF DRUG RESISTANCE OR DISEASE PATHOLOGY?

Remote Access Blot and Gel Imager
The new T:Genius imaging system allows high-performance, walk-away imaging of gels and blots on a smartphone or tablet. What makes the new T:Genius outperform other commercial imagers is the amazing ability to quickly and easily access stunning quality images anywhere from a tablet, computer, or smartphone. Using the T:Genius’ StatusLink feature, researchers can stay updated and even share image results with colleagues in labs around the world. This is a great time saver when, for instance, scientists are developing a long exposure chemi blot and want to see how it’s doing while having lunch or busy themselves with something else in the lab. The new T:Genius is both stylish and practical, comes in a choice of exciting colors and features a fantastic, sensitive camera that will give high-res images of even the biggest gels and blots as well as tricky applications such as stain-free protein gel imaging.

Syngene
For info: +44-(0)-1223-727123
www.syngene.co.uk/t-genius

GPC Column
The SecurityGuard family of products has been extended to include a cartridge-based system that protects any nonaqueous gel permeation chromatography (GPC) column. The cartridge system replaces traditional guard columns, offering a more convenient and cost-effective system for protecting expensive GPC columns from the damaging effects of contaminants and microparticulates. The unique cartridge design enables the user to visually inspect the surface of the column’s packing material at any time and monitor contaminant buildup. The visual inspection allows for cartridge changes at the right time to maintain optimal column protection and performance. This is the only guard cartridge system on the market for GPC columns and it offers many advantages over traditional guard columns. SecurityGuard is compatible with any manufacturer’s GPC column of any particle or pore size. The SecurityGuard is easy to use and connects directly into the column without the use of additional fittings that can decrease column performance.

Phenomenex
For info: 310-212-0555
www.phenomenex.com

Stereo Microscopes
Two new compact Greenough stereo microscopes are available for educational uses, lab routines, and industrial inspections: ZEISS Stemi 305 and ZEISS Stemi 508. Users are able to observe their samples in true color, 3-D, with high contrast, and free of distortion or color fringes. ZEISS Stemi 305 offers a 5:1 zoom. The microscope is easy to use and everything is integrated: LED illumination, reflected and transmitted light illuminations, and documentation. Users choose between the phototube to have access to all ZEISS microscope cameras or the integrated 1.2 megapixel Wi-Fi camera to connect several microscopes via wireless Internet. This enables them to share images and documentation with colleagues or students. The optics and mechanics of ZEISS Stemi 508 are designed for a heavy workload. The microscope is equipped with a large 8:1 zoom and offers a 35 mm large object field. Thanks to the changeable optics, users can observe specimens up to 120 mm in size as a whole.

ZEISS
For info: 800-233-2343
www.zeiss.com

Aspiration Controller
BrandTech is introducing the new VACUUBRAND VHC2® handheld fluid aspiration controller for cell and tissue culture. Its ergonomic design accommodates several different hand positions for comfortable fluid aspiration using Pasteur pipettes or pipette tips. All aspirated liquid is contained in the tubing for easy decontamination and minimizing air leakage. An optional eight-channel manifold with tip ejector is available. Supplied with the VACUUBRAND® BVC line of fluid aspiration systems, it can easily be fitted to aspiration systems from major manufacturers.

BrandTech
For info: 888-522-2726
www.brandtech.com

System Control Software
Unicorn 7.0 system control software has been designed for planning and controlling runs as well as analyzing results. The software controls protein purification runs as well as cell culture and preparation. Specifically designed to support the levels of collaboration required today, Unicorn 7.0 delivers a simplified user interface and enhanced features. Unicorn 7.0 provides a new evaluation module for quick insights to complex data, the ability to securely share developed methods, and an easy copy/paste function for preparation of reports. The software supports both simple and advanced tasks for both ÄKTA chromatography and ReadyToProcess WAVE 25 bioreactor systems. Fully scalable, the Unicorn platform is suitable for use within small-scale research all the way to full-scale manufacturing. Unicorn 7.0 offers the following features: easy-to-use intuitive interface to get started quickly with minimal training; secure data handling in a robust database; enhanced efficiency with network setup and collaborative features; and quick evaluation of results through single-click operations.

GE Healthcare Life Sciences
For info: 800-526-3593
www.gelifesciences.com/unicorn

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purposes, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Japanese launches multimillion dollar program to internationalize university education

The inception of the Top Global University Project was precipitated by the perception amongst university administrators that Japan is losing ground in the globalization of education and research. The Japanese government is now undertaking a program to improve world rankings, increase international student ratios, and change the mindset of faculty and staff at select universities.

By Adarsh Sandhu

In September 2014, Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) announced the selection of 37 Japanese universities for the 10-year, multimillion dollar Top Global University (TGU) Project, with the goal of “enhancing the international compatibility and competitiveness of higher education in Japan” (see Top Global University Project designations). Notably, the funding for this project is aimed at internationalizing education at Japanese universities, in contrast to funding for research-based reforms that was the aim of the 10-year Program for Promoting the Enhancement of Research Universities launched in the fall of 2013 (1).

The annual funding for the chosen universities is divided into Type A (¥420 million, US$3.5 million) for those that have the potential to be ranked as one of the top 100 in the world, and Type B (¥172 million, US$1.4 million) to support “innovative universities” in their efforts to internationalize.

With a view to openness and accountability, MEXT has posted the original 37 winning proposals for this project on its website (2). An examination of the proposals reveals many common goals and aspirations as well novel initiatives based on the history of each institute. Several universities are planning to introduce a new quarterly semester system to align Japan’s academic calendar with the rest of the world, thereby enabling the launch of new English language dual-degree programs. Another common theme is a commitment to growing the number of international students. Many universities have promised the construction of new “international dormitories” to house overseas and domestic students in the same space as well as an expansion of the powers of university presidents to hire new faculty and set competitive salaries.

Sense of crisis within Japan’s university administration

The TGU Project highlights a sense of crisis among Japan’s university administrators who feel that the country is slow in coming to terms with the globalization of education. Some recent statistics published by MEXT that compare the performances of Japanese universities with those in the United States and Europe underscore these concerns. For example, only 2.9% of students enrolled at Japanese universities are from overseas and in Japan only 5.1% of teaching staff are from abroad, compared with 29.5% at Harvard University (U.S.) and 41.4% at Cambridge University (U.K.).

Another, and perhaps equally important issue, is encouraging Japanese students to study abroad. According to MEXT, only approximately 57,500 Japanese students went abroad in 2011, compared with around 83,000 in 2004. The consensus amongst Japan’s academia to explain this trend is that there is no real need for Japanese students to go overseas because they can find everything they need for their studies and careers in Japan. A major concern is that such inward-looking students will not readily become part of the global network of scientists, thus further isolating Japan in terms of research and education in the future.

Paying for education

There are 775 universities in Japan: 86 national, 86 public, and 603 private, with approximately 5% of the 2.8 million students studying at national or public institutes. So why are Japan’s university administrators spending so much time and energy on internationalization? There are two main reasons.

The first is the realization that the dramatic fall in Japan’s birth rate—in 2014 there were 1.001 million births and 1.269 million deaths according to the health ministry—will lead to excess capacity, with the possibility of serious financial problems for both national and private universities. The drive to recruit more international students is intended to fill those places not taken by domestic students.

In terms of public sector university financing, national universities have had to justify their existence following passage of the National University Corporation Law in 2004 that gave Japan’s national universities much greater autonomy to manage their own affairs, but importantly, required them by law to submit strategies and plans to the government in order to receive subsidies. Another significant change in government funding support was the introduction of a 2005 policy that reduced the annual government subsidy by 1% each year. In 2007, the government began to reduce subsidies to private universities by 1% annually. In general, government subsidies cover approximately 80% of the running costs of national universities and about 10% of private institutes.

Tuition fees are an important source of income for universities. The annual tuition fee at Japan’s national universities is approximately ¥550,000 (US$4,600), while at private universities it is between ¥1,000,000 (US$8,400)
for arts, sciences, and engineering and over ¥3,000,000 (US$25,200) for medicine and other medical degrees. Since this income is insufficient to cover the running costs for most universities, they must compete for government funding.

The second reason that projects to internationalize Japan’s universities are being supported is the poor showing of these universities in world ranking tables. University presidents are puzzled and irritated in equal measure to find that only the University of Tokyo and Kyoto University were in the top 100 of the 2014 Times Higher Education World University Rankings. This contrasts with three each from China and South Korea, and two from the tiny nation of Singapore. The performance of Japan’s top universities appears to reflect the large disconnect between how universities are evaluated within Japan when compared with the criteria used internationally. The president of one of Japan’s top institutes confides, “We ignored the rankings for many years. However, the recent world rankings were a trigger that led us to devise new initiatives to improve our global competitiveness.”

The search for new career paths for university graduates
Another driving force behind the TGU Project is that Japanese companies have a greater presence overseas now than a decade ago, especially in Asia. They are increasingly global in their outlook and operations, and need employees with a multidisciplinary education and the ability to work globally. In response to the demands of Japan’s industrial sector, the proposals submitted by the 37 selected universities contain plans to give students opportunities to study interdisciplinary undergraduate courses and go abroad on industrial internships as well as to provide internships for overseas students at companies in Japan.

The next 10 years and beyond
Only time will tell whether Japan’s top 37 universities will achieve their project goals, in particular whether they are able to improve their world university ranking. It seems theoretically possible to achieve all these aims given innovative management, financing, and strategic global networking. However, some prominent academics in Japan have lingering concerns about just how far such internationalization should go, with some saying that the ultimate question will be whether Japan’s taxpayers want to support universities that are educating so many overseas students.

Adarsh Sandhu is a freelance writer based in Tokyo.

REFERENCES

Top Global University Project designations

Type A Universities
Hokkaido University
Tohoku University
University of Tsukuba National
The University of Tokyo
Tokyo Medical and Dental University National
Tokyo Institute of Technology
Nagoya University National
Kyoto University
Osaka University National
Hiroshima University National
Kyushu University
Keio University*
Waseda University*

Type B Universities
Tokyo University of the Arts National
Nagaoka University of Technology
Kanazawa University National
Toyohashi University of Technology
Kyoto Institute of Technology
Nara Institute of Science and Technology
Okayama University
Kumamoto University
Akita International University (Public)
The University of Aizu (Public)
Hosei University*
International Christian University*
International University of Japan*
Kwansei Gakuin University*
Meiji University*
Rikkyo University*
Ritsumeikan University*
Ritsumeikan Asia Pacific University*
Shibaura Institute of Technology*
Soka University*
Sophia University*
Toyo University*

*Indicates private university; all others are national universities.
Osaka University—Modernizing Japanese strategies for internationalization

Osaka University envisions World Tekijuku boosting diversity and internationalization in academics for the 21st century.

Osaka University is of one of Japan’s top-tier research-based comprehensive universities. Its roots grew out of the philosophy on which Tekijuku was built, explains Toshio Hirano, president of Osaka University. Tekijuku—an private school established in 1838 by Ogata Koan during the Edo period—was based on the Dutch educational system, or Rangaku (literally, “Dutch learning”), and exposed students to Western concepts. The curriculum primarily focused on medicine and used a rare collection of Dutch dictionaries and encyclopedias owned by Ogata, a prominent physician and scholar of the time.

During that time, Japan was isolated from the rest of the world, but the unique, global education enabled “graduates to play pivotal roles in the modernization of Japan during the Meiji Restoration in the late 19th century,” says Hirano. “The Tekijuku evolved into the forerunner of Osaka Medical School, and then, following the strong financial, administrative, and logistical support from the people of Osaka, in 1931 the Japanese government formally established what is now the modern Osaka University as Japan’s sixth Imperial University.”

Tekijuku goes global

Humans have faced a number of unique challenges over the past century—including the rapid proliferation of information technology, unprecedented growth in the world’s population, and increased mobility of people. “We launched the idea of World Tekijuku to help advance global efforts of finding

Demographics

Schools, Faculties, and Institutes at Osaka University

Osaka University encompasses 11 undergraduate schools, 16 graduate schools, 28 research institutes and centers, two university hospitals. In 2007, the university merged with Osaka University of Foreign Studies, which provides majors in 25 different languages.

Main Campuses: (area in square meters)

Suita (997,071), Toyonaka (445,851), Minoh (140,400), and Nakanoshima Center (1,000)

Budget

¥151.826 billion (2014) (US$1.28 billion)

People

23,429 students, 2012 international students, 3,460 academic staff members, 2,822 nonacademic staff members, and 860 international researchers.

Student exchange programs

Osaka University’s Short-Term Nondegree Programs

www.isc.osaka-u.ac.jp/en/education/student_exchange_programs.html

Osaka University Short-Term Student Exchange Program (OUSSEP)

www.osaka-u.ac.jp/en/international/inbound/exchange_program/oussep/oussepguide

FrontierLab@OsakaU

www.osaka-u.ac.jp/jp/international/iab/e/Frontierlab.html

Japanese Short-Stay In-Session Program (J-ShIP)

ex.ciee.osaka-u.ac.jp/shortstay-programs/JShIP/index.html
solutions to some of the major issues facing humankind in the 21st century,” says Hirano, an internationally respected immunologist and a recipient of the Crafoord Prize for his discovery of interleukin 6, an important mediator of inflammation. One of the goals of World Tekijuku is reforming Osaka University to become a research-based, globally recognizable institute that ranks as one of the top 10 universities in the world by its centenary in 2031. “The world is full of diversity,” says Hirano. “Our ultimate goal is to eliminate barriers due to diversity and prevent conflict by mutual understanding and respect of people with different cultures and religions through the common human language of scholarship. That is the meaning of creating ‘harmonious diversity through scholarship,’ building on the philosophy and spirit of free scholarship and inquiry taught by Ogata Koan at the Tekijuku.”

The university’s Institute for Academic Initiatives (IAI), which plays a key role in initiating interdisciplinary and global research, is in charge of promoting initiatives to support World Tekijuku. “The IAI was established in 2012 and is managed directly under the leadership of university president Hirano,” says Yasuyuki Okamura, executive vice president in charge of international strategies. “The institute offers five doctoral programs and has world-class research divisions which focus on drug development, cognitive neuroscience robotics, photon science and technology, and global history.” Importantly, students enrolled in these courses will have the opportunity to establish international collaborations to both enhance the quality of their research and gain first hand insights into the global socio-economic issues being faced by their research partners in other countries. This direct exposure will improve their understanding of other cultures and expose them to different ways of thinking, engendering cooperation rather than conflict—the central goal of Tekijuku.

In 2014, Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) selected Osaka University for the Top Global University (TGU) Project as a Type A institution (see editorial on page 1492), based on the university’s proposal to advance World Tekijuku. “The funding from the highly competitive TGU Program will be used to continue reforms at Osaka University to realize the goals of [this initiative],” says Hirano.

“The original Tekijuku successfully nurtured scholars who led the modernization of Japan and the birth of the Meiji era,” continues Hirano. “This was an epoch-making period in Japan’s history. We are confident that the concept of the World Tekijuku will play an important role in the resolution of diversity engendered conflicts by creating harmonious diversity through scholarship.”

World Tekijuku strategies

- Establish a new generation of World Tekijuku graduate schools by 2017 to accelerate international, interdisciplinary research projects and related personnel management systems initiated by the Institute for Academic Initiatives (IAI).
- Introduce a new quarter-based configuration for the academic year, consisting of three terms and a summer vacation, not widely used in Japan, but commonly used internationally. This will enable more students to study overseas and more international student to enroll in the university’s summer programs, such as the Osaka University Short-Term Student Exchange Program (OUSSEP), FrontierLab @OsakaU, and J-ShiP (see student exchange programs box).
- Create a new entrance examination system that can increase the number of international students accepted and improve their Japanese language proficiency.
- Quadruple the number of international joint research laboratories in which established scientists from overseas can conduct research at an Osaka University campus.
- Introduce highly competitive salary systems and a “cross-appointments” system with institutes around the world to double the number of international faculty within three years.
- Offer high-quality courses to students globally as part of the massive open online course (MOOC) platform, founded by the Massachusetts Institute of Technology and Harvard University in 2012. (Osaka University joined the consortium of top universities offering classes via edX in 2014.)
- Construct the Osaka University “Global Village” using a private, finance initiative to build 2,600 new student housing units for both domestic and international students as well as faculty and staff.
- Invite the University of California to set up an overseas office on the Osaka University campus to enhance the interaction between the institutions’ researchers and initiate new summer programs.
- Enhance Osaka’s global presence by collaborating with other universities via international frameworks and initiatives (for example, in June 2015, Osaka University will organize and host the annual meeting of the Association of Pacific Rim Universities, an organization of 45 universities from across the globe).

<table>
<thead>
<tr>
<th>Prize</th>
<th>Winner</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobel Prize in Physics 1949</td>
<td>Hideki Yukawa</td>
<td>Theoretical prediction of the existence of mesons</td>
</tr>
<tr>
<td>Lasker Award in 1982</td>
<td>Hidesaburo Hanafusa</td>
<td>Demonstration of how RNA tumor viruses cause cancer</td>
</tr>
<tr>
<td>Crafoord Prize in 2009</td>
<td>Tamamitsu Kishimoto and Toshio Hirano</td>
<td>Isolation of interleukins</td>
</tr>
<tr>
<td>Gairdner International Award in 2011</td>
<td>Shizuo Akira</td>
<td>Discovery of proteins that play a key role in innate immunity</td>
</tr>
<tr>
<td>Japan Prize in 2011</td>
<td>Tamamitsu Kishimoto and Toshio Hirano</td>
<td>Discovery of interleukin 6</td>
</tr>
<tr>
<td>Wolf Prize in Medicine in 1986</td>
<td>Osamu Hayashi</td>
<td>Discovery of oxygenase enzymes</td>
</tr>
<tr>
<td>Wolf Prize in Mathematics in 2002-2003</td>
<td>Mikio Sato</td>
<td>Foundation of algebraic analysis</td>
</tr>
</tbody>
</table>
Toyohashi University of Technology—Creating an international campus to nurture global technology architects

Established in 1976, Toyohashi University of Technology (Toyohashi Tech) is one of the smallest and youngest national universities in Japan with around 2,000 students and 200 faculty members.

“About 80% of our students are from Japan’s technical colleges who enroll as third year undergraduates, and the majority of them continue on to do a Master’s degree,” says President Takashi Onishi, an expert on urban regional development and president of the Science Council of Japan. “Our graduates continue to make important contributions to society as industry engineers, university educators, and researchers at institutes all over the world.”

Toyohashi Tech’s research and education success has been recognized by being selected for four major program awards from Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT), including the Program for Promoting the Enhancement of Research Universities; the Program for Leading Graduate Schools on “Brain Information Architect,” a joint project with Universiti Sains Malaysia (USM) to establish an overseas education base in Penang, Malaysia; and, most recently, the Top Global University (TGU) Project launched in October 2014.

Top Global University Project

“Selection for the Top Global University Project Type B [see editorial on page 1492] will enable us to increase our efforts to raise our global profile,” explains Onishi. “Over the next 10 years, we want to create a multicultural campus for students from Japan and overseas befitting the title of our program, ‘Creative Campus for Nurturing Global Technology Architects.’”

The main features of the Toyohashi Tech TGU Project include the introduction of bilingual language education at the undergraduate level and industrial internship opportunities for foreign students of the Global Technology Architects course at leading technology companies in Aichi Prefecture, where Toyohashi Tech is located, as well as across Japan. Notably, Aichi is the home to the headquarters and manufacturing base of Toyota Motor Corporation and affiliated companies. Additionally, it has the third largest gross domestic product in Japan after Tokyo and Osaka.

“We will also support foreign students who graduate from this course by helping them to find jobs in Japan,” says Takaaki Takashima, who is responsible for implementing and managing the TGU Project and was one of the first graduates of Toyohashi Tech. “We have many close links with companies in Aichi and in other parts of Japan. We are confident that students from this course will be able to embark on career paths of their choice.”

Takashima graduated in 1982 and immediately joined IBM, he explains. His initial role required him to communicate in English—a task that his time at Toyohashi Tech helped facilitate.

“I was lucky to have had opportunities to travel overseas during my student days,” explains Takashima. “Also, around 50% of the course textbooks were in English, so I gained confidence in my ability to communicate in English. This experience was important for my role at IBM because my first boss was not a native Japanese speaker.”

Since then, Takashima has had a productive 32-year career at IBM and has worked on projects related to personal computer development, hard disk business sales engineering, intellectual property business development, and sales and contract management.

Takashima commutes to Toyohashi from his home approximately 250 km away near Yokohama—approximately 100

Education centers at Toyohashi Tech

Institute for Global Network Innovation in Technology Education (IGNITE)

Accelerates the university’s globalization and human resources efforts.

ignite.tut.ac.jp/english/index.html

International Cooperation Center for Engineering Education Development (ICCEED)

Facilitates international exchange and alliances with the university.

ignite.tut.ac.jp/icceed/english/about/index.html

Center for International Relations

Contributes to the internationalization of the campus by serving as a meeting place for students.

ignite.tut.ac.jp/cir/english/

Center for International Education/TUT-USM Technology Collaboration Center in Penang Malaysia

Serves as an overseas education base.

ignite.tut.ac.jp/cie/penang/english/
minutes on the Kodama Shinkansen (bullet train) from Odawara Station. “I come here on Mondays and return on Fridays almost every week, staying locally during the weekdays,” says Takashima. “I would not have moved away from my home to the rather remote location of the Toyohashi campus if I had not been a graduate of this university. I am looking forward to managing this project to a successful conclusion over the next 10 years.”

Milestones for the Top Global University Project
The first group of undergraduates accepted for the “Global Technology Architects Course” will be graduates from technical colleges who will enroll as third-year students in 2017. Thereafter, the first group of graduating high school students will enroll as first-year entrants in 2018. A total of 440 students (240 domestic and 200 international) are expected to enroll in the course over the subsequent 10 years of the project. The aim is to boost the total percentage of international students from the current 10.3% to 27.2%. Toyohashi Tech is making major changes to its curricula, with the ultimate goal of making all courses bilingual within 10 years. The university will introduce new tutoring systems incorporating mentors to strengthen language skills in English and Japanese, with the aim of nurturing students to achieve the best scores possible in language proficiency tests for both languages.

The construction of a new multicultural boarding house is one of the flagship projects of the Toyohashi Tech program. The boarding house will be built with private financing and consist of several buildings, with a total of 200 shared rooms. “The aim is to have 42% of all students living, eating, and studying in an international environment on campus, where 25% are international students,” says Takashima.

The university also plans to increase the number of Japanese students with international experience from 0.3% to 20.5% by sending them on overseas internships and dual-degree programs.

There are also plans to increase international exchanges between nonacademic staff with overseas partner universities, increase foreign nonacademic staff from 1.4% to 7.1%, and increase the number of nonacademic staff attaining top language proficiency scores to at least 30%. Regarding faculty members, the university plans to have at least 50% of academic staff showing excellent language proficiency and to increase overseas staff from 16.8% to 23.4% and female staff from 5.2% to 12.9%.

Research centers at Toyohashi Tech
- **Electronics-Inspired Interdisciplinary Research Institute (EIIRIS)**
 Research flagship established in October 2010 to fuse strengths in electronics, life sciences, medical care, agricultural science, environment, telecommunications, and robotics.
 eiiris.tut.ac.jp

- **Venture Business Laboratory**
 Develops innovative technology and training programs for the electronics industry.
 www.vbl.tut.ac.jp

- **Incubation Center for Venture Business**
 Offers space and facilities for growing ideas from the bench to the market place.
 www.vbl.tut.ac.jp/icvb

- **Research Center for Collaborative Area Risk Management**
 Improves the disaster prevention capacity of the Higashi Mikawa region.
 www.carm.tut.ac.jp/index_eng.html

- **Research Center for Agrotechnology and Biotechnology**
 Introduces information and sensing technology into agriculture.
 www.recab.tut.ac.jp/contents/intro.html

- **Center for Human-Robot Symbiosis Research**
 Develops robot applications for rehabilitation and nursing, support in daily life, and education and human resource development.

Toyohashi Tech TGU Project overview

Toyohashi Tech TGU Project concept description
Hiroshima University—Knowledge creation for the prosperity of humankind

Hiroshima University is one of the largest comprehensive academic institutes in Japan with an annual income of ¥85.9 billion (US$732 million). It offers courses in subjects ranging from law, economics, and education to science, engineering, and medicine. The university has approximately 11,000 undergraduate students, 4,200 graduate school students, and 1,100 international students from 66 countries as well as 1,700 faculty and 1,600 nonacademic staff.

“The founding principles of Hiroshima University are embodied in its motto: ‘a single unified university, free and pursuing peace,’” says Masaki Sakakoshi, executive and vice president responsible for international education and peace. “The university is committed to nurturing students in a stimulating, international environment where scholars pursue cutting-edge research for the prosperity of humankind. Our mission is to be a base for knowledge creation.”

The roots of Hiroshima University go back to 1874 with the establishment of the Hakushima School. The modern university was formed in 1949 by combining Hakushima with six other schools. “The university worked closely with the city of Hiroshima to rebuild after the devastation of the first atomic bomb attack in history,” says Sakakoshi. “We decided to move out of central Hiroshima and by 1995, had merged and relocated 9 of our 11 faculties to the Higashi-Hiroshima campus. The faculties of Medicine and Dentistry, and Hiroshima University Hospital are located at the Kasumi campus, while some departments of the faculties of Law, Economics, and the Graduate School of Social Sciences and the Law School are at the Higashi Senda campus.

Top Global University Project

In 2014, Hiroshima University was selected by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as one of Japan’s top 13 universities for the Type A (see editorial on page 1492) Top Global University (TGU) Project.

“The selection of Hiroshima University by MEXT for this highly competitive project underscores our accomplishments providing world-class research and education to date,” says Hajime Nishitani, vice president for internationalization. “Some of our ambitious goals over the 10-year duration of the project include increasing the number of international students to 20%, offering 50% of courses in English, and increasing international faculty members to 50%.”

Objective assessment of the quality of education is a high priority at Hiroshima University. One of the measures that will be implemented as part of the TGU Project is peer review of the new educational programs by representatives from the international universities involved in the Student Experience in the Research University consortium.

Research is an integral part of the university’s strategy for globalization. Internationally renowned research facilities include the Research Institute for Radiation Biology and Medicine (RIRBM)—set up in 1961 to provide medical care for survivors of the August 1945 atomic bomb—and the Institute for Amphibian Biology, which holds unique expertise in rearing amphibians for studying the development, inheritance, and evolution of inbred strains of tropical clawed frogs.

“Our excellence in research was acknowledged in 2013 when we were selected by MEXT for the Program for Promoting the Enhancement of Research Universities,” explains Fusahito Yoshida, executive and vice president for research. “We are an open-minded university that welcomes the global community of students and scholars to join us to solve challenging problems of the 21st century.” Notably, researchers at the RIRBM are now studying the effects of radiation on people affected by the Fukushima nuclear reactor accident caused by the earthquake and tsunami in March 2011.

Aiming for the top

Hiroshima University is committed to creating knowledge on a global scale. “We offer a wide range of innovative educational programs, run unique research programs, and have launched highly successful industry-academia partnerships,” explains Sakakoshi. “We want to improve our global visibility over the next 10 years to enhance our presence on the international stage. One of the goals of the TGU Project is to improve our international standing and be one of the top 100 universities in the world within 10 years.”

Hiroshima University
www.hiroshima-u.ac.jp/index.html
Nara Institute of Science and Technology—Creating new career paths through interdisciplinary education and research

Nara Institute of Science and Technology (NAIST) is Japan’s new national graduate school university. Located in Japan’s first capital city, Nara, NAIST was established in 1991 and focuses on information, biology, and materials science. By implementing the concept of “education through research,” NAIST has been consistently recognized among Japan’s top-ranked universities in quality of research (Thomson Reuters’ Essential Science Indicators). To date, approximately 6,300 Master’s level students and 1,200 doctoral students have graduated from NAIST and taken up leading positions both in Japan and overseas.

Notably, NAIST has nurtured internationally renowned scientists including Shinya Yamanaka, director of the Center for iPS Cell Research and Application in Kyoto and 2012 Nobel laureate in physiology or medicine, who conducted his early research at NAIST. “With the extremely high level of both its research environment and faculty, NAIST is one of the top research universities in Japan,” explains Yamanaka. “Although I am now researching iPS cells at Kyoto University, most of the core members supporting me in my lab are colleagues and former students from my time at NAIST who came to Kyoto to work with and support me. Nara is really an excellent place to conduct research.”

Interdisciplinary education and research

“The institute’s selection for the Top Global University [TGU] Project by the Japanese government in 2014 and for the Research University Enhancement Promotion Project in 2013 acknowledges the high quality of our graduate school education and cutting-edge research,” says Naotake Ogasawara, president of NAIST.

The TGU Project is a 10-year initiative funded by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) with the aim of strengthening the international competitiveness of Japan’s academic institutes. The objectives of NAIST during the decade-long TGU Project include: (1) launching new joint degree programs with foreign universities to enhance its portfolio of doctoral course programs; (2) reforming the university’s governance for more flexibility in hiring staff in new research fields; (3) creating a global campus environment to support interdisciplinary education and cultural diversity; and (4) reorganizing the current three graduate schools into a single entity to establish a unique and massive interdisciplinary platform to meet the needs of the information society of the 21st century.

Forging new career paths

“Society is changing at a rapid pace,” says Ogasawara. “In an increasingly cyber-based society, scientists of the 21st century will require a greater understanding of diverse topics such big data, information and communication technology, and data sciences. Indeed, the scope of science is expanding rapidly, while at the same time its role in society is also changing dramatically. To meet such challenges, we are transforming our three divisions of information, biology, and materials into a single platform to prepare our students for new career paths in the interdisciplinary world of the future where knowledge of a wide range of specialties will be essential.”

Specific targets during the 10-year TGU Project include increasing the number of foreign doctoral students from the current 30% to 50%, and sending NAIST students for one-year stays overseas at partner universities such as Paul Sabatier University in France and the University of California, Davis in the United States.

“Creating new career paths is an important part of the project,” says Mikio Kataoka, executive director and vice president of NAIST. “We want to extend the abilities of our graduates so that they can become not only research scientists, but also have choices of other careers, such as in government policy and journalism.”

The goals of the project are formidable and achieving them will require the full support of the staff at NAIST. “One of the key issues will be changing the mindset of staff at NAIST,” stresses Ogasawara. “We are entering an era where academics and university administrators must think globally and outside of the box.”
CALL FOR PAPERS

Abstract Submission Opens May 18, 2015 | Abstract Submission Deadline June 18, 2015

ENERGY AND SUSTAINABILITY
LL Materials and Architectures for Safe and Low-Cost Electrochemical Energy Storage Technologies
MM Advances in Flexible Devices for Energy Conversion and Storage
NN Thin-Film and Nanostructure Solar Cell Materials and Devices for Next-Generation Photovoltaics
OO Nanomaterials-Based Solar Energy Conversion
PP Materials, Interfaces and Solid Electrolytes for High Energy Density Rechargeable Batteries
QQ Catalytic Materials for Energy
RR Wide-Bandgap Materials for Energy Efficiency—Power Electronics and Solid-State Lighting
SS Progress in Thermal Energy Conversion—Thermoelectric and Thermal Energy Storage Materials and Devices

THEORY, CHARACTERIZATION AND MODELING
TT Topology in Materials Science—Biological and Functional Nanomaterials, Metrology and Modeling
UU Frontiers in Scanning Probe Microscopy
VV In Situ Study of Synthesis and Transformation of Materials
WW Modeling and Theory-Driven Design of Soft Materials
XX Architectured Materials—Synthesis, Characterization, Modeling and Optimal Design
YY Advanced Atomistic Algorithms in Materials Science
ZZ Material Design and Discovery via Multiscale Computational Materials Science
AAA Big Data and Data Analytics for Materials Science
BBB Liquids and Glassy Soft Matter—Theoretical and Neutron Scattering Studies
CCC Integrating Experiments, Simulations and Machine Learning to Accelerate Materials Innovation
DDD Lighting the Path towards Non-Equilibrium Structure-Property Relationships in Complex Materials

X Frontiers of Material Research

www.mrs.org/fall2015

The MRS-E-MRS Bilateral Conference on Energy will be comprised of the energy-related symposia at the 2015 MRS Fall Meeting.

Meeting Chairs
T. John Balk University of Kentucky
Ram Devanathan Pacific Northwest National Laboratory
George G. Malliaras Ecole des Mines de St. Etienne
Larry A. Nagahara National Cancer Institute
Luisa Torsi University of Bari “A. Moro”

Don’t Miss These Future MRS Meetings!
2016 MRS Spring Meeting & Exhibit
March 28 - April 1, 2016
Phoenix, Arizona

2016 MRS Fall Meeting & Exhibit
November 27 - December 2, 2016
Boston, Massachusetts
The Next Generation of DNA Assembly and Cloning

NEBuilder® HiFi DNA Assembly

The next generation of DNA assembly and cloning has arrived. With NEBuilder HiFi DNA Assembly, you'll enjoy virtually error-free joining of DNA fragments. More efficient assembly is now possible, even with larger fragments, low inputs, or 5′- and 3′-end mismatches. Additionally, use NEBuilder HiFi to bridge two dsDNA fragments with a ssDNA oligo. Save time with less screening or re-sequencing, and benefit from no licensing fee requirements from NEB when choosing NEBuilder products.

Request a free sample* at www.NEBuilderHiFi.com

*While supplies last. Offer valid in the US only. Limit one sample per customer.

NEW ENGLAND BIOLABS®, NEB® and NEBUILDER® are registered trademarks of New England Biolabs, Inc.

GIBSON ASSEMBLY® is a registered trademark of Synthetic Genomics, Inc.

<table>
<thead>
<tr>
<th>Fragment size</th>
<th>Vector size</th>
<th>Total size (kb)</th>
<th>Total fragments assembled</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 kb</td>
<td>5-4 kb</td>
<td>7.7 kb</td>
<td>2</td>
</tr>
<tr>
<td>210 bp</td>
<td>5.4 kb</td>
<td>7.7 kb</td>
<td>2</td>
</tr>
<tr>
<td>5-4 kb</td>
<td>210 bp</td>
<td>7.9 kb</td>
<td>2</td>
</tr>
<tr>
<td>210 bp</td>
<td>7.7 kb</td>
<td>7.9 kb</td>
<td>2</td>
</tr>
<tr>
<td>450 bp + 250 bp</td>
<td>2.1 kb</td>
<td>8.4 kb</td>
<td>2</td>
</tr>
<tr>
<td>7 kb</td>
<td>5.5 kb</td>
<td>7.7 kb</td>
<td>3</td>
</tr>
<tr>
<td>3.3 kb</td>
<td>7 kb</td>
<td>8.3 kb</td>
<td>3</td>
</tr>
</tbody>
</table>

NEBuilder HiFi DNA Master Mix offers improved fidelity over Gibson Assembly Master Mix.

Fidelity of assembled products was compared between NEBuilder HiFi DNA Assembly Master Mix (NEB #E2621) and Gibson Assembly Master Mix (NEB #E2611). Experiments were performed using the various fragment and vector sizes, following suggested protocols. Experiments B and C vary because sequences of fragments are different. Experiments D and F were performed with fragments containing 3′-end mismatches.