Some think that the results of our research programs are something to celebrate. We think they’re right.

The Leukemia & Lymphoma Society (LLS) is proud of our research programs and their grantees. With no means of preventing most blood cancers, LLS is focused on finding cures. Through its academic grants LLS is funding science to advance personalized medicine, multiple approaches to immunotherapy and other leading edge research to find treatments and cures. Thanks to our researchers we are saving lives and improving outcomes for patients. And that’s certainly something to jump up about!

Make Someday Today.
Learn more about LLS’s grant programs and see how far your research can go.

Ellie
leukemia survivor

LEUKEMIA & LYMPHOMA SOCIETY®
fighting blood cancers

Learn more about

www.L
LLS honors this year’s research grantees

Career Development Program (CDP)
- Uttiya Basu
 - Columbia University Medical Center
- Nicholas Brown
 - St. Jude Children's Research Hospital
- Fernando Camargo
 - Children's Hospital Boston
- Ahmet Coskun
 - California Institute of Technology
- Dan Dominissini
 - University of Chicago
- Craig Forester
 - University of California, San Francisco
- Benjamin Garcia
 - University of Pennsylvania
 - School of Medicine
- Ramiro Garzon
 - Ohio State University
- David Guerlin
 - University of Massachusetts Medical School
- Andrew Intlekofer
 - Memorial Sloan-Kettering Cancer Center
- Neeraj Joshi
 - University of California, San Francisco
- I-Ju Lee
 - Dana-Farber Cancer Institute
- Qiming Liang
 - University of Southern California
- Ravindra Majeti
 - Stanford University
- Vera Mugoni
 - Beth Israel Deaconess Medical Center
- Jagan Murpudi
 - University of California, San Francisco
- Lars Plate
 - Scripps Research Institute
- Prabha Sarangi
 - Dana-Farber Cancer Institute
- Daniel Starczynowski
 - Cincinnati Children's Hospital Medical Center
- Zuzana Tothova
 - Dana-Farber Cancer Institute
- Christopher Vakoc
 - Cold Spring Harbor Laboratory
- Bas Wouters
 - Erasmus University Rotterdam
- Heping Xu
 - Children’s Hospital Medical Center Research Foundation

Myeloproliferative Neoplasms (MPN)
- Nadia Carlesso
 - Indiana University School of Medicine
- Robert Kralovics
 - Center for Molecular Medicine of the Austrian Academy of Sciences
- Zhihang Qian and Wen-Shu Wu
 - University of Illinois College of Medicine
- Katya Ravid
 - Boston University School of Medicine
- Brady Stein
 - Northwestern University
- Zhaohui Ye
 - Johns Hopkins University School of Medicine
- Leonard Zon
 - Boston Children's Hospital

Specialized Center of Research (SCOR)
- David Weinstock
 - Dana-Farber Cancer Institute

Transforming CURES Initiative (TCI)
- John Crispino
 - Northwestern University
- Phillip Koeffler
 - Cedars-Sinai Medical Center
- Raghuveer Mali
 - Indiana University (Indianapolis)
- Akiko Shimamura
 - Fred Hutchinson Cancer Research Center

Translational Research Program (TRP)
- Iannis Alfantis
 - New York University School of Medicine
- Stephen Ansell
 - Mayo Clinic Rochester
- Caroline Arber
 - Baylor College of Medicine
- Smita Bhatia
 - University of Alabama at Birmingham
- Giulia Casorati
 - Fondazione Centro San Raffaele
- Leandro Cerchietti
 - Joan & Sanford I. Weill Medical College of Cornell University
- Li Chai
 - Brigham & Women's Hospital
- Sandeep Dave
 - Duke University Medical Center
- Stephen Gottschalk
 - Baylor College of Medicine
- Douglas Graham
 - University of Colorado at Denver
- Jolanta Grebeneck
 - University of Michigan
- Marina Konopleva
 - University of Texas MD Anderson Cancer Center
- William Matsui
 - Johns Hopkins University School of Medicine
- Nikhil Munshi
 - Dana-Farber Cancer Institute
- Antonio Palumbo
 - University of Torino Medical School
- Feyruz Rassool
 - University of Maryland
- Alain Rook
 - University of Pennsylvania
- Stefanie Sarantopoulos
 - Duke University Medical Center
- Kris Thieleman
 - Vrije Universiteit Brussel
- Andrei Thomas-Tikhonenko
 - Children's Hospital of Philadelphia
- Amit Verma
 - Albert Einstein College of Medicine
- David Wald
 - Case Western Reserve University School of Medicine
- Roland Walter
 - Fred Hutchinson Cancer Research Center
- Ryan Wilcox
 - University of Michigan

our research program

LS.org/research
THE TOUGHEST CHALLENGES.
THE WORLD’S SMARTEST SCIENTISTS.
£20 MILLION AWARDS.

Grand Challenge is an ambitious international research funding scheme offering a series of £20 million awards to solve cancer’s toughest questions. We’re looking for big, innovative ideas from interdisciplinary teams across the world. If you think you have what it takes, we want to hear from you.

Rise to the challenge
CRUK.ORG/GRANDCHALLENGE

Call closes 12th February 2016.
WELCOME TO THE FUTURE OF TRANSIENT EXPRESSION

Achieve 3 g/L protein yields in transient CHO with the ExpiCHO™ Expression System

Switching from 293 to CHO cells during drug development may cost you precious time and create uncertainty. Now there’s a better way. The new Gibco™ ExpiCHO™ Expression System provides the highest protein yields possible in a transient system. That means you can always work in CHO cells, starting from discovery.

See the future of transient expression at thermofisher.com/expicho
Fusion Transcripts Detection
Cancer researchers now have a set of TaqMan gene expression assays designed to detect fusion transcripts using real-time polymerase chain reaction (PCR). Certain fusion transcripts are considered rare and are not well characterized; therefore, detecting these rare events using a single technology can deliver ambiguous results. As such, researchers often employ an orthogonal method of validation to confirm results. As a complementary solution to next generation sequencing (NGS) panels, including the Oncomine Focus Assay, the TaqMan gene expression assays are designed to serve as an orthogonal validation method for confirming NGS results. Assay benefits include proven TaqMan assay chemistry, guaranteed performance for all predesigned assays, single-tube construction (containing a probe, forward primer, and reverse primer for each target used in the simple, fast PCR workflow), and the use of universal cycling conditions—making it possible to run any combination of assays in parallel on a single real-time PCR instrument. Life Technologies
For info: 800-955-6288
www.lifetechnologies.com/allgenes

Prevalidated Fluorinated Fragment Library
A new library of fluorinated compounds with superior drug-like characteristics has been designed to maximize the efficiency of fluorine nuclear magnetic resonance (NMR) and X-ray crystallography screening, saving both time and cost in the process. The new Maybridge fluorine labeled fragment library is a diverse fragment library of 480 fluorinated compounds. Approximately 20% of known drug compounds contain a fluorine atom. As such, fluorine NMR is a fast-growing technique used in fragment screening, an important method for rapid identification of new lead molecules in drug discovery due to higher hit probability and fewer fragments needing to be screened. This Maybridge library was derived from more than 5,000 fluorinated candidates and was optimized through a stringent biophysical selection process to increase the probability of hit generation. Each compound has been validated using fluorine and standard NMR, solubility testing, X-ray crystallography, and surface plasmon resonance techniques to provide the highest quality. Thermo Fisher Scientific
For info: 800-678-5599
www.thermofisher.com

Surface Plasmon Resonance System
The Reichert 4SPR is a new, four-channel surface plasmon resonance (SPR) system for label-free, real-time investigation of biomolecular interactions. By combining four channels with improved industry-leading sensitivity and baseline stability, Reichert 4SPR enables drug discovery researchers to maximize their efficiency, flexibility, and throughput. A researcher can run three experimental channels with one reference, two experimental channels with two separate references, or test different immobilization chemistries or regeneration schemes on each channel. The Reichert 4SPR’s high sensitivity (+/- 0.05 µRIU rms noise) reduces the amount of sample required for each experiment and produces results even if a large portion of the protein sample is inactive or denatured. This makes the instrument perfect for analyzing small molecules or very low concentrations of larger biomolecules. The Reichert 4SPR is also able to determine picomolar concentrations and equilibrium dissociation constants and has a low baseline drift (0.01 µRIU min⁻¹), which improves data fitting. Reichert Life Sciences
For info: 716-686-4522
www.reichertsp.com

Dual-Luciferase Reporter Assay
The new Nano-Glo Dual-Luciferase Reporter (NanoDLR) Assay is a two-reporter system that incorporates NanoLuc luciferase technology, providing increased data quality and greater sensitivity for biologically complex applications. The new NanoDLR assay allows researchers to measure NanoLuc and firefly luciferases together in a convenient, easy-to-use format. The NanoDLR Assay’s improved firefly chemistry and small, ultrasensitive NanoLuc luciferase provide researchers with more sensitivity to detect small changes in expression, more flexibility in assay design, and more robust control reporter options. In the NanoDLR Assay, both firefly luciferase and NanoLuc luciferase can be used as dynamic reporters, greatly increasing versatility by allowing researchers to choose the primary reporter that best meets their experimental needs. The NanoDLR’s new assay chemistry also provides improved reagent stability over time.

Promega
For info: 608-274-4330
www.promega.com

Mass Spectrometry System
Combining direct-from-sample ionization with high-performance, time-of-flight (TOF) mass spectrometry and powerful, intuitive analytics, the rapid evaporative ionization mass spectrometry (REIMS) research system with the iKnife sampling system eliminates the need for sample preparation and chromatographic separation, providing food, microbiology, and tissue researchers with near-instantaneous data acquisition. Using REIMS, researchers can quickly and easily differentiate samples from one another and confidently identify the differentiating features, allowing greater insight into the chemical and biological systems under investigation. With REIMS, direct, rapid heating of samples leads to the formation of vapor that is rich in sample-specific chemical information. The vapor is taken directly into the mass spectrometer (Xevo G2-XS QTof or SYNAPT G2-Si HDMS), where the molecules are analyzed by TOF mass spectrometry.

Waters
For info: 800-252-4752
www.waters.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
want new technologies?

antibodies
apoptosis
biomarkers
cancer
cytometry
data
diseases
DNA
epigenetics
genomics
immunotherapies
medicine
microbiomics
microfluidics
microscopy
neuroscience
proteomics
sequencing
toxicology
transcriptomics

watch our webinars

Learn about the latest breakthroughs, new technologies, and ground-breaking research in a variety of fields. Our expert speakers explain their quality research to you and answer questions submitted by live viewers.

VIEW NOW!
webinar.sciencemag.org

Brought to you by the Science/AAAS Custom Publishing Office

@SciMagWebinars
Even more from less.

NEBNext® Ultra™ II DNA Library Prep Kit for NGS

Are you challenged with trying to get higher library yields using ever-decreasing input amounts? Each component in the NEBNext Ultra II DNA Library Prep Kit from NEB® has been reformulated, resulting in a several-fold increase in library yield with as little as 500 picograms of input DNA. These advances deliver unprecedented performance, while enabling lower inputs and fewer PCR cycles. Get even more from less with NEBNext Ultra II.

Visit NEBNextUltraII.com to learn more and request a sample.

The NEBNext Ultra II DNA Library Prep Kit for Illumina® produces the highest yield libraries from a broad range of input amounts.

Libraries were prepared from Human NA19240 genomic DNA using the input amounts and numbers of PCR cycles shown. Manufacturers' recommended protocols were followed, with the exception that size selection was omitted.

NEW ENGLAND BIOLABS®, NEB®, and NEBNEXT® are registered trademarks of New England Biolabs, Inc.
ULTRA™ is a trademark of New England Biolabs, Inc.
KAPA™ is a trademark of Kapa Biosystems. ILLUMINA® and TRUSEQ® are registered trademarks of Illumina, Inc.