Call for entries: a global award in stem cell and regenerative medicine

Stem cell and regenerative medicine is the new frontier in life sciences. Boyalife, Science and Science Translational Medicine jointly establish a global award to recognize significant contributions in advancing basic science to clinical applications in this field.

The award is to recognize and reward scientists in the fields of stem cell and/or regenerative medicine with a focus on developing cell-based treatments for cancer, degenerative disorders, immunotherapy and stem cell transplantation.

You could be next to win this prize and to receive
★ A Grand Prize of $25,000 and a Runner-Up Prize of $5,000 will be awarded.
★ The Grand Prize Winning Essay will be published in Science; a brief abstract of the Runner-Up Essay will be published in Science.

The 2016 Award is now open. The deadline for submissions is March 1, 2016
For more information, please visit: http://bit.ly/BoyalifeSciencePrize
Over 300 Peer-Reviewed Droplet Digital PCR (ddPCR™) Publications*

From detection of rare mutations and cancer biomarkers to quantification of gene editing events and miniscule viral loads, the QX100™ and QX200™ Droplet Digital PCR Systems have been used to redefine the limits of absolute nucleic acid quantification. With over 300 peer-reviewed publications, ddPCR platforms have outperformed other digital PCR systems by several orders of magnitude. The third-generation QX200™ AutoDG™ System now brings automation and scalability to digital PCR.

Visit bio-rad.com/info/ASCB300 for the publication list and to learn more.

* Based on PubMed data, October 2015.
Even more from less.

NEBNext® Ultra™ II DNA Library Prep Kit for NGS

Are you challenged with trying to get higher library yields using ever-decreasing input amounts? Each component in the NEBNext Ultra II DNA Library Prep Kit from NEB® has been reformulated, resulting in a several-fold increase in library yield with as little as 500 picograms of input DNA. These advances deliver unprecedented performance, while enabling lower inputs and fewer PCR cycles. Get even more from less with NEBNext Ultra II.

Visit NEBNextUltraII.com to learn more and request a sample.

The NEBNext Ultra II DNA Library Prep Kit for Illumina® produces the highest yield libraries from a broad range of input amounts.

Libraries were prepared from Human NA19240 genomic DNA using the input amounts and numbers of PCR cycles shown. Manufacturers' recommended protocols were followed, with the exception that size selection was omitted.
Finding cures starts with research tools that actually work...

• Proteomic products and services
• Focused product portfolio
• Products tested for specificity and sensitivity
• Antibodies rigorously tested across a wide range of research applications
• Custom formulations
• GMP-grade recombinant rabbit monoclonal antibodies*
• Bulk orders and lot reservations

* Custom formulations of certain monoclonal antibodies can be produced by CST in compliance with FDA regulations governing ASRs. Such products would be classified as Analyte Specific Reagents. Analytical and performance characteristics are not established. All other products are for Research Use Only. Not For Use In Diagnostic Procedures.

Learn more at: www.cellsignal.com/drugdiscovery
Visualize Cellular Responses

CELLESTIAL® Fluorescent Probes

High-Specificity Next Generation Fluorescent Probes

Our CELLESTIAL® portfolio of fluorescent probes and assay kits for cellular analysis provides a complete set of tools for monitoring cell viability, proliferation, death, oxidative stress and toxicology on flow cytometry, microscopy and microplate platforms. Our assays and probes are optimized for the most demanding imaging applications, where consistency and reproducibility are essential.

CYTO-ID® Autophagy Detection Kit
A no-transfection assay for monitoring autophagy

ROS-ID™ Total ROS/Superoxide Detection Kit
Accurately profile Total ROS and Superoxide with dual-readout assay

NUCLEAR-ID® Red DNA Stain
Brighter cell permeable DNA stain

Fluorescent Microscope

Fluorescent Microplate Reader

Flow Cytometer

scientists enabling scientists.™
www.enzolifesciences.com

© 2015 Enzo Life Sciences
Now you can use the same transfection reagent for your knockout, knockdown or expression experiments. The TransIT-X2® Dynamic Delivery System takes CRISPR genome editing a step further with an advanced polymeric technology that efficiently delivers plasmid DNA, small RNAs such as siRNA and CRISPR guide RNA or RNP complexes.

The TransIT-X2® Dynamic Delivery System delivers CRISPR/Cas components in multiple formats:

- **DNA**—deliver plasmid DNA expressing Cas9 or guide RNA
- **RNA**—deliver sgRNA or crRNA:tracrRNA
- **Protein**—deliver Cas9:引导RNA RNP complexes
Register and book your housing now to use funds from fiscal year 2015. Reduced rates are available until January 19, 2016. AAAS members are eligible for further discounts

aaas.org/meetings

AAAS, publisher of Science, thanks the sponsors and supporters of the 2016 Annual Meeting

As of November 16, 2015
“What I do with my Octet HTX time? Climb.”

Shave weeks off your lead selection programs.

Broader antibody cross-competition ups your odds of finding the best candidates, but larger epitope binning studies take time. The Octet HTX system lets you use any binning assay format, any size matrix, start a run and get analyzed results the same day or the next day for larger studies. You can also combine multiple experiments into one dataset to easily visualize and cluster antibodies in similar bins or binding groups.

Lucy gets out of the lab more often now to climb. What will you do with your extra time?
LAMBDA VF-5
Tunable filter changer

NEW!

Introducing the world’s first filter changer to use tunable thin-film optical filters. The Sutter LAMBDA VF-5 allows you to quickly access any center bandpass from 330 to 800nm in nanometer increments. Building on the VersaChrome® filters from Semrock®, the LAMBDA VF-5 maintains transmission over the tuning range of each filter.

Easy Wavelength Selection
Wavelength range as wide as 330-800nm
Keypad or computer interface (USB or serial)

Flexible
Suitable for excitation or emission
Easily switch between fluorophore combinations
Optional liquid light guide offers absolute vibration isolation
Images pass through filters

Thin filter advantage
High transmission
Steep spectral edges
High out-of-band blocking
Polarization independence (s and p nearly identical)

SUTTER INSTRUMENT

PHONE: 415.883.0128 | FAX: 415.883.0572
EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM

AAAS Travels

Discover
KAMCHATKA & Lake Baikal!
Including the Trans-Siberian Express
July 22–August 6, 2016

Explore the two finest natural areas in Russia—Kamchatka Peninsula and Lake Baikal! Take the Trans Siberian Express from the Russian Far East across the vast taiga of Russia to Irkutsk and Lake Baikal. Baikal is the richest single location in Russia for endemism, a fabulous reservoir of unique flora and fauna. It is the oldest and deepest lake in the world. We invite you to join Dr. Victor Kuzevanov for a fascinating adventure! $5,995 pp + air.

For a detailed brochure, call (800) 252-4910
All prices are per person twin share + air.

BETCHART EXPEDITIONS inc.
17050 Montebello Rd, Cupertino, CA 95014
Email: AAASInfo@betchartexpeditions.com
www.betchartexpeditions.com

myIDP:
A career plan customized for you, by you.

For your career in science, there’s only one Science

Features in myIDP include:
- Exercises to help you examine your skills, interests, and values
- A list of 20 scientific career paths with a prediction of which ones best fit your skills and interests
- A tool for setting strategic goals for the coming year, with optional reminders to keep you on track
- Articles and resources to guide you through the process
- Options to save materials online and print them for further review and discussion
- Ability to select which portion of your IDP you wish to share with advisors, mentors, or others
- A certificate of completion for users that finish myIDP.

Visit the website and start planning today!
myIDP.sciencecareers.org
Organelle recitals

To isolate and study organelles from cells, scientists use methods that range from primitive to modern. By Alan Dove

Over 50 years ago, Albert Claude and George Palade of Rockefeller University found a way to separate the individual organelles of cells for analysis. Their method, differential centrifugation, relied on breaking the cells’ outer membranes and then sedimenting the lysate through fluids of different viscosities. This work helped start the era of modern cell biology.

The field has since blossomed and expanded in ways its founders never anticipated, but as a new generation of researchers brings modern proteomic and genomic tools to bear on organelle biology, they often find that the first few steps in their protocols have hardly changed. Dounce homogenizers, centrifuges, and sucrose gradients still feature prominently in cellular laboratories everywhere. “I don’t think we have seen any revolution in the field since Claude and Palade’s differential centrifugation,” says Luca Scorrano, scientific director of the Venetian Institute of Molecular Medicine in Venice, Italy.

Old school

Cell biology’s reliance on classical techniques can be both reassuring and annoying. The standard approaches use equipment and reagents most researchers probably already have in their labs, but figuring out exactly how to purify a particular organelle can be surprisingly difficult. Scorrano explains that newcomers to the field quickly find that methods sections in modern papers often reference work from decades earlier. “It takes quite a while to dig into the original literature to find how they really isolated [organelles],” he says.

Even with a published protocol in hand, the process may not work as expected. “There are a number of tricks which are usually passed from researcher to researcher by word of mouth,” says Scorrano. Several years ago, he and his colleagues crystallized one such artisanal protocol for mitochondrial isolation by publishing it in a peer-reviewed journal. Unfortunately, Scorrano says that few others have followed suit, because so much of the field’s technical knowledge continues to reside in oral traditions. “If you have [access to] somebody who is knowledgeable about [organelle] preparation, use them,” he adds.

When researching an organelle isolation method, investigators should also consider what they intend to do with the final product. For example, studying the physiological state of mitochondria in a rat liver at a particular time may call for a rapid but crude extraction of the organelles before they begin to degrade. Proteomic analysis of the same mitochondria would require more careful purification, with less concern about maintaining the organelles’ physiology.

Scorrano points out that the mitochondrial field also has a historical division between researchers working on protein import, who often study yeast, and those studying bioenergetics using rat liver cells. Yeast mitochondrial isolation generally involves hyperosmotic buffers that could derail the physiology of rat mitochondria.

Despite the challenges of starting from scratch, Scorrano takes a dim view of prepackaged organelle purification kits, preferring that those in his lab learn the entire process. “You might need some time to get to a level in which you can easily isolate organelles with decent purity and with decent function, but [kits] are banned in my lab,” he says.

Kitting up

Researchers with less experience in organelle isolation tend to be more open to off-the-shelf solutions, and several companies cater to that market. “These are definitely well-established protocols; there’s nothing new under the sun,” says George Yeh, product manager for protein biology at Sigma-Aldrich in St. Louis, Missouri. However, Yeh adds that “one concern is uniformity of technique from lab to lab.” Using a prepared reagent kit and protocol from an established company can improve reliability. “I think what we bring to it is consistency—that you know that every lot of the kit is going to look the same—and the ease of use,” says Yeh.

Sigma-Aldrich currently offers over a dozen different organelle isolation kits, each optimized for a specific organelle or type of analysis. “We have kits for isolation of peroxisomes or Golgi or endoplasmic reticulum, [or] chloroplasts for those working on plants,” says Yeh. For organelles that contain their own DNA, such as mitochondria and chloroplasts, researchers can follow the organelle purification with a DNA-isolation step to track subcellular genetics.

Scientists studying organelle-associated proteins increasingly use mass spectrometry after purifying the target organelle, which has added a new...
For organelles that contain their own DNA, such as mitochondria and chloroplasts, researchers can follow the organelle purification with a DNA-isolation step to track subcellular genetics.

challenge: Reagents used in some older protocols may interfere with mass spectrometers. In response, Sigma-Aldrich has launched a series of reagents and kits designed to be mass spectrometry-compatible.

Besides kits, the chemical supply giant also sells individual reagents, and Yeh concedes that ready-made kits may not always be the most cost-effective choice. “If you’re going to do it a hundred times over, I would bet you’re better off making your own kit,” he says, adding that “the market we serve [with kits] are people who do it once or twice.”

Regardless of which approach they choose, Yeh echoes Scorrano’s assessment that any lab should be able to execute competent organelle isolations once they’ve taken the time to learn and practice the procedures. “There’s always that first hurdle to jump over, but once they do that they’re on their way,” says Yeh.

Smart shopping

Over the years, some researchers and lab suppliers have also developed their own special tricks to improve organelle isolation procedures. Although most of the modifications are minor, they add up for certain types of analyses.

“Traditional methods will provide purified proteins to the extent of doing Western blots, where even a degraded protein might work . . . but when you go for any activity analysis, you will need the protein to be in its functional state,” says Payal Khandelwal, product manager for assay kits at Biovision in Milpitas, California. “That is where the more enhanced techniques come into the picture,” adds Khandelwal.

Besides protein degradation, older techniques may be less effective at separating different organelles from cytoplasmic components. That may not matter for physiological experiments, but in highly sensitive genomic or proteomic studies, the contaminants could mask the phenomena the researcher is trying to track.

Biovision is one of several companies working to solve those problems with carefully optimized organelle purification kits. “It’s not involving any extra machinery or instrumentation; it just involves some very specific and very advanced reagents which are provided along with the kit,” says Khandelwal. Other than the kit, researchers need only ordinary centrifuges and related equipment they probably have on hand.

Perhaps the most challenging part of using such kits is deciding which one will work best. Comparing the protocols to see which is the most straightforward is one approach, but companies don’t disclose the proprietary ingredients in their buffers, so it can be hard to predict which will work best for a particular lab’s needs. Khandelwal suggests asking about the expected yield of a kit and the assays required to determine whether the isolation worked. “If the client is looking at, say, mitochondrial DNA, of course DNA is going to be isolated, but how do you know whether it is pure mitochondrial DNA, or [if there is] contamination from nuclear DNA?” asks Khandelwal.

Another advantage of using kits optimized for a particular type of experiment is support. If the experiment doesn’t work, researchers who’ve used kits can call the manufacturer for troubleshooting help, whereas those who’ve mixed their own reagents will have to figure out the problem on their own.

More than the sum of its parts

Although biochemists may be anxious to separate organelles from their cellular contexts, it often pays to take a close look at the intact system first. That’s particularly true for mitochondria, which can adopt different configurations depending on the cell’s physiological state.

“We once described the mitochondrion as a small football-shaped organelle,” says James Murray, general manager of Abcam in Cambridge, United Kingdom. He adds, “We’ve come to realize that that’s actually not the case; they’re not discrete organelles necessarily.”

Indeed, depending on the cell type and its current state, mitochondria can be individual ellipsoids or may form reticulated networks that connect to other structures such as the endoplasmic reticulum and plasma membrane. “It’s a very dynamic and fluid situation,” says Murray.

That raises problems for researchers who want to study isolated mitochondria. Pulling a spaghetti-like network of membranes out of a cell is considerably harder than separating discrete organelles. Murray suggests that researchers begin by using techniques such as immunofluorescence to visualize a cell’s organization before deciding whether to break it open. If the question is whether a particular protein localizes to a particular organelle, microscopy could provide all the necessary data without requiring researchers to resort to any isolation techniques.

For those who do need to fractionate cells, Murray reiterates other experts’ advice to pick the right protocol for the ultimate analysis. Experiments that require intact, physiologically active mitochondria are among the most finicky organelle isolations. Starting with healthy, fresh cells, experimenters need to complete the entire protocol...
and analysis as quickly as possible. Efforts to revive mitochondria after storage in a freezer generally fail. Getting active mitochondria also requires one step that kit makers haven’t been able to simplify: sucrose gradient centrifugation. Researchers must mix two different concentrations of sucrose together while slowly transferring the mixture into a centrifuge tube, generating a smoothly increasing density gradient from the bottom to the top of the tube. The gradient has to be mixed immediately before use, and getting consistent results takes practice. Abcam and other companies are working on antibody-based organelle purifications that would omit the tedium of sucrose gradients, but those products are still in development. “I think maybe we’re on the cusp of taking a step forward and having affinity-based methods to isolate organelles,” says Murray.

The methyl lab
For investigators who just want to isolate mitochondrial or chloroplast DNA and don’t care about the organelles’ physiological states, that future has already arrived. Scientists at New England Biolabs (NEB) in Ipswich, Massachusetts have developed an antibody-based protocol for separating organelle and nuclear DNA. The technique exploits differences in methylation between the two pools of genetic material.

“In nature, organelar DNA is not methylated, or is methylated at a very low level,” explains Erbay Yigit, applications and product development scientist at NEB. Yigit and his colleagues created a methyl-binding protein fused to an antibody constant region, which binds DNA only if it’s relatively well-methylated. By allowing the engineered protein to bind total isolated cellular DNA, the team can precipitate the nuclear DNA from the mitochondrial or chloroplast DNA.

The researchers originally developed the protocol to separate microbial from human genomic DNA for microbiomics research, but quickly found that it works well for organelle DNA separation as well. NEB now sells the reagents in kit form, including magnetic beads covered in Protein A, which bind the antibody constant region to precipitate the methylated nuclear DNA without a centrifugation step. “This protocol is really straightforward, so you can start with extracted DNA [and] there’s nothing to be scared of,” says Yigit. After a standard DNA purification protocol, researchers need to perform only a few additional steps to separate the organelle and nuclear DNA fractions.

Plant biologists may still have to deal with a tricky separation problem, however. Yigit explains that the NEB kit leaves mitochondrial and chloroplast DNA in the same fraction. “DNA from these organelles is very similar,” he says.

Download the app
Although the growing collection of kits certainly speeds many types of experiments, some scientists may be able to get a head start on their subcellular studies without even getting their hands dirty. “If you know the protein sequence, you can deduce, in some cases very accurately, where that protein is located,” says Fiona Brinkman, professor in the School of Computing Science at Simon Fraser University in Burnaby, British Columbia, Canada.

Brinkman and her colleagues have developed a software application called “PSORT” to make such predictions. The team initially focused on bacterial and archaeal proteins, but a branch of the program also works for eukaryotic cells. “We’re [increasingly] appreciating [that bacteria] have organelle-like structures,” says Brinkman.

PSORT uses a machine learning algorithm, which takes examples of well-proven protein localizations and then extrapolates to predict which other proteins will localize similarly in cells. Brinkman explains that “there’s a lot of power in getting more lab data” to train the algorithm further, but the search for those data has revealed some of the pitfalls of fractionating cells. Brinkman emphasizes that researchers need to analyze all of the fractions they isolate, rather than just the one that interests them most. “You can have contamination from other fractions, so you want to see that [a protein] is actually located predominantly in one fraction,” she says.

After being fed carefully vetted data, however, PSORT has matured into a powerful tool. “It’s impressively accurate now for the organisms that have been traditionally well-studied,” says Brinkman, adding that her team is now extending the program to make predictions for a broader range of organisms. Since its development, PSORT has been downloaded thousands of times and cited in numerous publications.

PSORT’s popularity suggests that many investigators with little bioinformatics training are using it. Brinkman encourages that, but cautions users to read the associated publications. “For any computational method . . . make sure you’re aware of the accuracy and how that’s been investigated for a particular method,” she says.

That advice echoes what Scorrano says about traditional differential centrifugation: “It’s easy. [But] it’s much more complicated to interpret [the results].”

Alan Dove is a science writer and editor based in Massachusetts.

DOI: 10.1126/science.opms.p1500100

Featured Participants

<table>
<thead>
<tr>
<th>Abcam</th>
<th>Simon Fraser University</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.abcam.com</td>
<td>www.sfu.ca</td>
</tr>
<tr>
<td>Biovision</td>
<td>Venetian Institute of Molecular Medicine</td>
</tr>
<tr>
<td>www.biovision.com</td>
<td>fondbiomed.it/vimm</td>
</tr>
<tr>
<td>New England Biolabs</td>
<td>www.neb.com</td>
</tr>
<tr>
<td>Sigma-Aldrich</td>
<td>www.sigmaaldrich.com</td>
</tr>
</tbody>
</table>
Mass Cytometry System

The CyTOF platform enables system-level biology at single-cell resolution, on an accessible, expandable system designed for breakthrough discovery. Mass cytometry has driven the revolution of single-cell proteomics, enabling the most comprehensive understanding of cell phenotypes, signaling pathways, and function. Helios is the most advanced tool for cellular exploration, with streamlined workflows and multimodal capabilities that can transform single-cell biology. The Helios platform delivers an extensive list of features and advances to the core CyTOF technology, enhancing performance and convenience of operation. These include a more intuitive and easy-to-use software interface with real-time data display, normalization, and control. Helios also provides improved sensitivity to detect and resolve lower-abundance targets and an expanded mass range of 135 discrete channels with virtually no signal overlap or background noise as compared to conventional techniques. This enables more comprehensive and straightforward panel designs and higher-quality data sets.

Fluidigm
For info: 866-358-4354
www.fluidigm.com

Broadband Filter Sets

Three exciting new broadband filter sets that support Brilliant Violet and Ultraviolet dyes are now available. When used in conjunction with these 10× brighter dyes, the new filter sets allow microscopists to visualize molecules of small quantities or low expression within the cell. For laser applications, including flow cytometry, these new emission filters are designed to block common laser lines of 355 nm and 405 nm. The BUV395-3018A, BUV421-3824A, and BUV510-3825A sets are all available for purchase online and immediate shipment. All Semrock products carry their industry-leading 10-year warranty. All of the new BD Bioscience Brilliant dyes and Semrock filter products are available to test and model in SearchLight, the online toolbox that allows you to easily see all of the elements of your fluorescence system. SearchLight allows engineers and biologists alike to quickly calculate relative signal brightness, signal-to-noise ratio, and autofluorescence levels for best filter compatibility.

Semrock
For info: 866-736-7625
www.semrock.com

Cell Counter

The Cell Counter model R1 offers user-friendly and cost-effective cell counting for routine cell culturing. The R1 uses innovative liquid-lens autofocus technology, which mimics the way the human eye focuses. It features software with a unique algorithm for accurate, automated cell counts in as little as 15 seconds. The R1 is designed to be user friendly and includes a 7-inch touchscreen display with an intuitive interface. The software is easily optimized and features cell-size and roundness-based sorting capabilities, the ability to identify live and dead cells, clumped cell declustering, and an automatic dilution calculator. Users can easily adjust the minimum and maximum cell size so that only desired cells are detected. Counts can then be displayed as a histogram for analyzing certain cells based on size distribution. The R1 can store up to 1,000 counts and 300 different cell protocols, facilitating quick setup and counting for routine culturing procedures.

Olympus
For info: +49-(0)-40-23773-5913
www.olympus-lifescience.com

Fluorescence Illumination System

The new Lumen 1600-LED fluorescence illumination system is designed for the most advanced fluorescent techniques; however, it has intuitive controls making it easy to use. The light-emitting diodes (LEDs) in the Lumen 1600 last at least 25,000 hours and deliver evenly distributed, high-intensity light for optimal excitation of fluorophores. Incorporating 16 LEDs and covering the spectrum from 365 nm to 770 nm, the Lumen 1600 is an ideal illumination tool for work involving multiple fluorophores. Using an innovative four-channel system, the Lumen 1600 allows up to four distinct fluorophores to be excited simultaneously. These LED groupings allow the use of almost all stains used in multiband combinations, allowing great flexibility in experimental work. Multiple preset modes are possible, from simple white light illumination to more advanced options with different intensities of individual LED emissions. This flexibility makes the Lumen 1600 ideal for use by imaging facilities where multiple users with different requirements use the same equipment.

Prior Scientific
For info: +44-1223-881711
www.prior.com

Cell Disruption Device

The Spiral Mill from Cellcrusher is a cooled-bead homogenizer for disrupting tough microorganisms. It is designed specifically for protein-scale work, accommodating 1-6 g samples. These samples are disrupted in reusable grinding chambers made of stainless steel to facilitate cooling. The unique cell-disruption process involves a rotating spiral inside the grinding chamber. In the narrow space between the spiral and the chamber wall, violent collisions occur between glass beads and cells, resulting in fast, effective cell lysis. The frictional heat generated by these collisions is conducted away through the steel chamber walls. Unlike those found in other bead homogenizers, the Spiral Mill’s sample chamber does not move, because agitation is induced by the rotating spiral. This design facilitates an uncomplicated, reliable cooling system involving pumped ice water. The temperature remains around 2°C during processing. The novel chamber design and simple cooling system make the Spiral Mill the ideal device for disrupting mid-size samples of the toughest microorganisms.

Cellcrusher
For info: +353-879905282
www.cellcrusher.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/products/newproducts.dtl for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and government organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
Discover the future
4 leading positions at SciLifeLab

To further strengthen our unique research environment, we are looking to recruit four outstanding young group leaders.

- Assistant Professor in Systems Biology
- Assistant Professor in Medical Infection Biology
- Assistant Professor in Computational Biology or Environmental Toxicology
- Assistant Professor in Bioinformatics

For more information, please visit: www.scilifelab.se/fellows
Introducing Superclonal secondary antibodies, a breakthrough technology designed to eliminate cross-reactivity

The results are in, and the images are stunning. Our completely new category of secondary antibodies uses recombinant technology to offer accurate and precise detection of primary antibodies for bright, clear images. Thermo Scientific™ Superclonal™ Secondary Antibodies — a precisely better antibody.

See the difference at thermofisher.com/superclonal