VIROLOGY

Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia

Jamal S. M. Sabir,1* Tommy T.-Y. Lam,3,4,5,6 Mohamed M. M. Ahmed,1,6,7 Lifeng Li,3,6,8 Yongyi Shen,3,4 Salah E. M. Abo-Aba,1,7 Muhammad I. Qureshi,1 Mohamed Abu-Zeid,1,7 Yu Zhang,3,4,5,6,8,9 Mohammad A. Khilyami,4,5,6,7 Njud S. Alharbi,1,7,8 Nahid H. Hajrajr,1,7,8,9 Meshaal J. Sabir,1,7,8,9 Mohammed H. Z. Mutwakil,1,7 Saleh A. Kabli,1,7,8,9 Faten A. S. Alsalimainy,1,7 Abdullah Y. Obaidal,1,7 Boping Zhou,1,2,7,8,9,10 David K. Smith,1,2,7,8,9,10 Edward C. Holmes,1,2,7,8,9,10 Huachen Zhu,2,3,4,8,9 Yi Guan1,2,3,4,8,9

Outbreaks of Middle East respiratory syndrome (MERS) raise questions about the prevalence and evolution of the MERS coronavirus (CoV) in its animal reservoir. Our surveillance in Saudi Arabia in 2014 and 2015 showed that viruses of the MERS-CoV species and a human CoV 229E–related lineage co-circulated at high frequencies, with frequent co-infections in the upper respiratory tract of dromedary camels. Including a betacoronavirus 1 species, we found that dromedary camels share three CoV species with humans. Several MERS-CoV lineages were present in camels, including a recombinant lineage that has been dominant since December 2014 and that has subsequently led to the human outbreaks in 2015. Camels therefore serve as an important reservoir for the maintenance and diversification of the MERS-CoVs and are the source of human infections with this virus.

1Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia. 2State Key Laboratory of Emerging Infectious Diseases (The University of Hong Kong–Sherenzhen Branch), Shenzhen Third People’s Hospital, Shenzhen, China. 3Centre for Influenza Research and State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China. 4Fudan University School of Public Health, Shanghai 200433, China. 5Department of Virology, Viroclinics Biosciences, Nieuwegein, The Netherlands. 6Department of Microbiology, Graduate School of Biomedical Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8578, Japan. 7University of Hong Kong Joint Institute for Biotechnology and Macromolecular Science, Shenzhen, China. 8Department of Molecular Virology, The University of Hong Kong, Hong Kong, China. 9These authors contributed equally to this work. *Corresponding author. E-mail: zhuich@hku.hk (H.Z.); yguan@hku.hk (Y.G.)

Maj or outbreaks of Middle East respiratory syndrome (MERS) have been repeatedly reported in the Arabian Peninsula since 2012 and recently in South Korea (1–3), renewing concerns about potential changes in the mode of MERS coronavirus (CoV) transmission. Although increasing evidence suggests that dromedary camels are the most likely source of human infections (4–14), the prevalence and evolution of the MERS-CoV in this animal and the route of virus transmission to humans are not well defined, and little is known of other CoV species that may circulate in camels and how they might influence CoV ecology.

We conducted surveillance for CoVs in dromedary camels in Saudi Arabia, the country most affected by MERS, from May 2014 to April 2015. Initially, paired nasal and rectal swabs were collected from camels at slaughterhouses, farms, and wholesale markets in Jeddah and Riyadh. Because rectal swabs were negative for MERS-CoVs (tables S1 and S2), only nasal swabs were subsequently collected at these sites and in Taif (15). Of the 1309 camels tested, 25.3% were positive for CoV, as established by reverse transcription polymerase chain reaction (RT-PCR) and confirmed by Sanger sequencing. The majority of the CoV-positive camels may not be possible to achieve, as virus replicates in the upper respiratory tract even in the presence of specific antibodies, similarly to other respiratory viruses. Because dromedary camels do not show severe clinical signs upon MERS-CoV infection, vaccination of dromedaries should primarily aim to reduce virus excretion to prevent virus spreading. Young dromedaries excrete more infectious MERS-CoV than adults (5, 15, 16), so young animals should be vaccinated first. Our results reveal that MVA-S vaccination of young dromedary camels may significantly reduce infectious MERS-CoV excreted from the nose. Two major advantages of the orthopoxvirus–based vector used in our study include its capacity to induce protective immunity in the presence of preexisting (e.g., maternal) antibodies (32) and the observation that MVA-specific antibodies cross-neutralize camelpox virus, revealing the potential dual use of this candidate MERS-CoV vaccine in dromedaries. Dromedary camels vaccinated with conventional vaccinia virus showed no clinical signs upon challenge with camelpox virus, whereas control animals developed typical symptoms of generalized camelpox (33). The MVA–vectored vaccine may also be tested for protection of humans at risk, such as health care workers and people in regular contact with camels.
came from wholesale markets (tables S1 and S2), where indigenous camels mixed with camels imported from Sudan and Somalia. Local camels had significantly higher positive rates for MERS-CoVs and other CoVs than did imported camels (Pearson's χ² test, P < 0.05; tables S1 and S2).

Three CoV species were detected in dromedary camels: MERS-CoV (betacoronavirus, group C); betacoronavirus 1 (betacoronavirus, group A); and human CoV 229E (alphacoronavirus) (fig. S1). Viruses from the latter two species are designated as camel β1-HKU23-CoVs and camelid α-CoVs, respectively. Although CoVs were detected almost year-round in these animals, a relatively higher prevalence of both MERS-CoV and camelid α-CoV was observed from December 2014 to April 2015 (tables S1 and S2). Juvenile camels (0.5 to 1 year old) had the highest levels of respiratory

Fig. 1. Genomic recombination in MERS-CoVs. Only the variable sites (variants shared by more than two sequences; see the supplementary materials) were used for (A) and (B). (A) A rescaled structure of the MERS-CoV genome (top) with consensus nucleotides, and any corresponding amino acid substitutions, that are phylogenetically informative in defining the lineages (bottom) (25). Nucleotides common with lineage 5 are highlighted (nucleotide substitution C26167T results in amino acid substitution P106S in ORF4b). The likely exchanged region is shaded blue. (B) Bootscanning recombination analysis based on the variable genomic sites. The dashed line indicates 70% bootstrap support. (C) Maximum-likelihood phylogenetic trees inferred for the outer (left) and inner (right) nonrecombinant regions, indicating that lineage 5 is a recombinant of lineages 3 and 4. A subset of sequences from each lineage was used. Camel viruses are indicated by red circles; those sequenced in this study are shown in red text. Shimodaira–Hasegawa–like branch test values and Bayesian inference clade probabilities >0.9 (indicated by asterisks) are shown at selected lineages. Branch lengths reflect the number of nucleotide substitutions per site, and the trees were rooted by Camel/Egypt/NRCE-HKU205/2013. The inset tree was inferred using all available MERS-CoV genomic sequences (n = 164; fig. S2).
infections with both the MERS-CoV and camellid α-CoV, followed by calves under 6 months, both at about twice the rate observed in camels aged 1 to 2 years (table S2). Younger camels seem to play a more important epidemiological role in maintaining both viruses, which is consistent with previous findings (10, 11, 16, 17).

The overall positive rates for MERS-CoV and camellid α-CoVs from nasal swabs were 12.1 and 19.8%, respectively (tables S1 and S2). However, only 3 of 304 camel rectal swabs were CoV-positive for either camellid α-CoV or camel β-CoV (tables S1 and S2). Thus, a major mode of virus shedding of the MERS- and camellid α-CoVs is from the respiratory tract of dromedary camels. Over half of MERS-CoV–positive nasal swabs (56.6%) were also positive for camellid α-CoVs, indicating frequent co-infections of these viruses (tables S1 and S2). Nasal swabs from two animals contained all three species of CoVs detected in our survey. The high prevalence of these viruses suggests that they are enzootic in dromedary camels.

To examine the genetic diversity and evolution of the camel CoVs, metagenomic sequencing was carried out using the original swab materials that were positive in the initial RT-PCR screening. A total of 93 full-length viral genomes (67 MERS-CoVs, 25 camellid α-CoVs, and one camel β-CoV) were obtained from noncamel swab samples. Thirty-eight of these samples presented co-infections of MERS-CoV with one or both of the two other CoV species, but only 14 samples yielded two complete genomes.

β-CoV and camellid α-CoVs have been detected in camels in Dubai (18), and the camellid α-CoVs are closely related to a virus isolated from alpacas in California in 2007 (fig. S1) (19, 20). The camellid α-CoVs clustered with the human CoV 229E (fig. S1), a causal agent of common colds in humans. The high prevalence of asymptomatic infections with camellid α-CoVs in Saudi Arabian camels emphasizes the important role that this species plays in CoV ecology.

Recombination has been reported in the MERS-CoV species (21, 22). Phylogenetic analysis of the MERS-CoV full-genome sequences obtained in this study (n = 67), together with those available in public databases (n = 106), revealed recombination signatures that defined five major phylogenetically stable lineages, all of which contained human and camel MERS-CoV sequences (Fig. 1 and figs. S2 and S3). A few viruses that showed inconsistent topologies in subgenomic trees, suggesting that they have a more varied history of recombination, were not classified within the five main lineages (fig. S2). MERS-CoVs from Saudi Arabian camels were found within each of the five lineages; the viruses sequenced in this study fell into lineages 3, 4, and 5, with the exception of some minor recombinants (Figs. 1 and figs. S2 and S3). Thus, the evolution of MERS-CoVs within camels has led to diverse lineages that have all caused human infections, indicating that there is a low barrier for interspecies transmission.

MERS-CoVs obtained between July and December 2014 mainly fell into lineages 3 and 5, whereas those from 2015 were principally from lineage 5 (Fig. 2 and figs. S2 and S3). Four viruses sampled during December 2014, which showed evidence of a small recombinant region, and a virus from March 2015 belonged to lineage 4 (Fig. 2 and figs. S2 to S4). Viruses from lineage 5, which are associated with the Korean outbreak and the recent human infections in Riyadh (Fig. 1) (3), were first identified in our surveillance in July 2014 and have been predominant in Saudi Arabian camels since November 2014. However, all of the human viruses of this lineage were reported from February 2015 onward. The MERS-CoV variants associated with the recent outbreak of human infections in South Korea [e.g., ChinaGD01-v1/2015 and KOR/KNH/002-05/2015 (23, 24)] show the highest similarity (99.86 to 99.98%, full genome) to a camel virus (Camel/Riyadh/Ry159/2015) sampled in March 2015 (Fig. 1 and figs. S2 and S3).

A statistically significant signal for phylogenetic incongruence in lineage 5 defined two recombinant sources of the MERS-CoV genome: (i) positions 1 to 16,173 and 24,191 to end, and (ii) positions 16,174 to 24,190 (Fig. 1). The phylogeny indicates that lineage 5 viruses evolved from a recombinant virus that acquired the 5' part of ORF1ab and the 3' part of the S (spike) gene from lineage 4 and the remaining genomic regions from lineage 3 (Fig. 1C). In both subgenomic phylogenies, lineage 5 viruses were closely related to lineage 3 and 4 viruses from Saudi Arabian camels, suggesting that they hosted this recombinant event. Ten synonymous nucleotide changes and a Thr631Ala amino acid substitution in the nsp14-exonuclease of the ORF1b polyprotein, relative to lineage 3, were due to the recombination in lineage 5 (Fig. 1A). The possible function of these substitutions requires further investigation. A molecular clock dating analysis indicates that the recombination event probably occurred between December 2013 and June 2014 (fig. S5). Nine other putative MERS-CoV recombinant strains (fig. S4) were seemingly generated by sporadic events and have not persisted in the population, or may represent mixed infections of MERS-CoV strains from different lineages. Although frequent co-infections of MERS- and camellid α-CoVs were observed (tables S1 and S2), no evidence of recombination among them was identified.

Four CoV species circulate widely in humans, and two others have caused severe sporadic infections with limited human-to-human transmission (11, 12). The wide species range of CoVs and their propensity to cross species boundaries suggest that more will emerge in the future. Since the first report of MERS in 2012 (1, 2), the causative virus has been transmitted to over 25 countries, mostly by international travelers that have been to the Middle East (3). Even though a high prevalence of MERS-CoVs has been detected in this work and in previous studies of dromedary camels (4–10), limited quarantine and biosecurity measures are in place to reduce the exposure of humans to the virus, and more cases must be expected in the future. The recent outbreak of MERS in Korea (3) shows that MERS-CoVs have the ability to cause large outbreaks in environments...
that are different from Middle East. Although changes in human population density, climate conditions, and social factors may contribute to the spread of MERS-CoVs in other regions, the prevention of transmission at the animal/human interface is likely to be the most efficient measure to contain the threat from this virus.

REFERENCES AND NOTES

15. Materials and methods are available as supplementary materials on Science Online.

ACKNOWLEDGMENTS


SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/351/6268/6268/suppl/DC1

Materials and Methods
Figs. S1 to S5
Tables S1 and S2
References (26–47)

24 June 2015; accepted 12 November 2015
Published online 17 December 2015
10.1126/science.aac8608

Rationally engineered Cas9 nuclease with improved specificity

Ian M. Slaymaker,1,2,3,4* Linyi Gao,1,4* Bernd Zetsche,1,2,3,4 David A. Scott,1,2,3,4
Winston X. Yan,1,3,6 Feng Zhang1,2,3,4

The RNA-guided endonuclease Cas9 is a versatile genome-editing tool with a broad range of applications from therapeutics to functional annotation of genes. Cas9 creates double-strand breaks (DSBs) at targeted genomic loci complementary to a short RNA guide. However, Cas9 can cleave off-target sites that are not fully complementary to the guide, which poses a major challenge for genome editing. Here, we use structure-guided protein engineering to improve the specificity of Strepococcus pyogenes Cas9 (SpCas9). Using targeted deep sequencing and unbiased whole-genome off-target analysis to assess Cas9-mediated DNA cleavage in human cells, we demonstrate that enhanced specificity SpCas9 (eSpCas9) variants reduce off-target effects and maintain robust on-target cleavage. Thus, eSpCas9 could be broadly useful for genome-editing applications requiring a high level of specificity.

GENOME EDITING

that the activity of Cas9 can be triggered even when there is imperfect complementarity between the RNA guide sequence and an off-target genomic site, particularly if mismatches are distal to the protospacer adjacent motif (PAM), a short stretch of nucleotides required for target selection (3, 4). These off-target effects pose a challenge for genome-editing applications. Here, we report the structure-guided engineering of Strepococcus pyogenes Cas9 (SpCas9) to improve its DNA targeting specificity.

Several strategies to enhance Cas9 specificity have been reported, including reducing the amount of active Cas9 in the cell (3, 5, 6), using Cas9 nickase mutants to create a pair of juxtaposed single-stranded DNA nicks (7, 8), truncating the guide sequence at the 5′ end (9), and using a pair of catalytically inactive Cas9 nuclease assemblies, each fused to a FokI nuclease domain (10, 11). Although each of these approaches reduces off-target mutagenesis, they have a number of limitations: Reducing the amount of Cas9 can decrease on-target cleavage efficiency, double nicking requires the concurrent delivery of two single-guide RNAs (sgRNAs), and truncated guides can increase indel formation at some off-target loci and reduce the number of target sites in the genome (12, 13).

The crystal structure of SpCas9 in complex with guide RNA and target DNA (14, 15) provides a basis to improve specificity through rational engineering. The structure reveals a positively charged groove, positioned between the HNH, RuvC, and PAM-interacting domains in SpCas9, that is likely to be involved in stabilizing the nontarget strand of the target DNA (Fig. 1, A and B, and fig. S2). We hypothesized that neutralization of positively charged residues within this nontarget strand groove (nt-groove) could weaken nontarget strand binding and encourage rehybridization between the target and nontarget DNA strands, thereby requiring more stringent Watson-Crick base pairing between the RNA guide and the target DNA strand.

To test this hypothesis, we generated SpCas9 mutants consisting of individual alanine substitutions at 31 positively charged residues within the nt-groove and assessed changes to genome-editing specificity (Fig. 2A; fig. S1, A and B; and fig. S2). Single amino acid mutants were tested for specificity by targeting them to the EMX1 (1 target site in human embryonic kidney (HEK) cells using a previously validated guide sequence; indel formation was assessed at the on-target site and three known genomic off-target (OT) sites (3, 4). Five of the 31 single amino acid mutants reduced activity at all three off-target sites by a factor of at least 10 compared with wild-type (WT) SpCas9 while maintaining on-target cleavage.

Cas9-mediated DNA cleavage is dependent on DNA strand separation (14, 15). Mismatches between the sgRNA and its DNA target in the first 8 to 12 PAM-proximal nucleotides can eliminate nuclease activity; however, this nuclease activity can be restored by introducing a DNA:DNA mismatch at that location (3, 16–19). We hypothesized that nuclease activity is stabilized by strand separation and reasoned that by attenuating the helicase activity of Cas9, mismatches between the sgRNA and target DNA are less energetically favorable, resulting in reduced cleavage activity at off-target sites (fig. S1).

The crystal structure of SpCas9 in complex with guide RNA and target DNA (14, 15) provides a basis to improve specificity through rational engineering. The structure reveals a positively charged groove, positioned between the HNH, RuvC, and PAM-interacting domains in SpCas9, that is likely to be involved in stabilizing the nontarget strand of the target DNA (Fig. 1, A and B, and fig. S2). We hypothesized that neutralization of positively charged residues within this nontarget strand groove (nt-groove) could weaken nontarget strand binding and encourage rehybridization between the target and nontarget DNA strands, thereby requiring more stringent Watson-Crick base pairing between the RNA guide and the target DNA strand.

To test this hypothesis, we generated SpCas9 mutants consisting of individual alanine substitutions at 31 positively charged residues within the nt-groove and assessed changes to genome-editing specificity (Fig. 2A; fig. S1, A and B; and fig. S2). Single amino acid mutants were tested for specificity by targeting them to the EMX1 (1 target site in human embryonic kidney (HEK) cells using a previously validated guide sequence; indel formation was assessed at the on-target site and three known genomic off-target (OT) sites (3, 4). Five of the 31 single amino acid mutants reduced activity at all three off-target sites by a factor of at least 10 compared with wild-type (WT) SpCas9 while maintaining on-target cleavage.
Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia


Science 351 (6268), 81-84.
DOI: 10.1126/science.aac8608 originally published online December 17, 2015

Coronaviruses in the Middle East

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory illness and kills about a third of people infected. The virus is common in dromedary camels, which can be a source of human infections. In a survey for MERS-CoV in over 1300 Saudi Arabian camels, Sabir et al. found that dromedaries share three coronavirus species with humans. Diverse MERS lineages in camels have caused human infections, which suggests that transfer among host species occurs quite easily. Haagmans et al. made a MERS-CoV vaccine for use in camels, using poxvirus as a vehicle. The vaccine significantly reduced virus excretion, which should help reduce the potential for transmission to humans, and conferred cross-immunity to camelpox infections.

Science, this issue p. 81, p. 77

ARTICLE TOOLS
http://science.sciencemag.org/content/351/6268/81

SUPPLEMENTARY MATERIALS
http://science.sciencemag.org/content/suppl/2015/12/16/science.aac8608.DC1

RELATED CONTENT
http://stm.sciencemag.org/content/scitransmed/6/235/235fs19.full
http://stm.sciencemag.org/content/scitransmed/7/301/301ra132.full
http://stm.sciencemag.org/content/scitransmed/6/234/234ra59.full
http://science.sciencemag.org/content/sci/350/6267/1453.full
http://science.sciencemag.org/content/sci/351/6268/77.full

REFERENCES
This article cites 42 articles, 8 of which you can access for free
http://science.sciencemag.org/content/351/6268/81#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.