The future of liquid biopsy is here

From blood sample to variant data, end-to-end workflows for clinical research

Comprehensive, automated solutions using Ion Torrent™ technology help you obtain the answers you need to make the most of noninvasive clinical research samples.

- Identify mutations in cfDNA, CTCs, or both from a single tube of blood
- Maximize accuracy and simplicity with Ion Torrent™ workflows incorporating liquid biopsy and next-generation sequencing
- Choose solutions that adjust to your available sample and throughput needs: analyze from just a few to thousands of biomarkers

Preval with liquid biopsy solutions for oncology research. See more at thermofisher.com/liquidbiopsy

For Research Use Only. Not for use in diagnostic procedures. © 2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. LiquidBiopsy is a trademark of Cynvenio Biosystems. COL01187 0116
Take Control with dynamic cell culture.

Biology is so much more than DMEM/FBS, 37 °C, 5% CO₂. It's easy to program automated changes to culture media, gas and temperature, while tracking cell responses, with the flexible, intuitive CellASIC® ONIX Microfluidic Platform. By taking control of this truly in vivo-like environment, you'll be able to perform dynamic, time-lapse experiments never before possible.

Watch live cells respond in real time: www.emdmillipore.com/CellASIC
Even more from less.

NEBNext® Ultra™ II DNA Library Prep Kit for NGS

Are you challenged with trying to get higher library yields using ever-decreasing input amounts? Each component in the NEBNext Ultra II DNA Library Prep Kit from NEB® has been reformulated, resulting in a several-fold increase in library yield with as little as 500 picograms of input DNA. These advances deliver unprecedented performance, while enabling lower inputs and fewer PCR cycles. Get even more from less with NEBNext Ultra II.

Visit NEBNextUltraII.com to learn more and request a sample.

The NEBNext Ultra II DNA Library Prep Kit for Illumina® produces the highest yield libraries from a broad range of input amounts.

Libraries were prepared from Human NA19240 genomic DNA using the input amounts and numbers of PCR cycles shown. Manufacturers’ recommended protocols were followed, with the exception that size selection was omitted.
Deciphering Cancer

Antibodies to evaluate key signaling networks involved in cancer metabolism.

Download pathways at www.cellsignal.com/cancerpathways
The first global award for stem cells and regenerative medicine

Stem cells and regenerative medicine is the new frontier in life sciences. Boyalife, Science, and Science Translational Medicine jointly establish a global award to recognize and reward scientists in the fields of stem cells and/or regenerative medicine with a focus on developing cell-based treatments for cancer, degenerative disorders, immunotherapy and stem cells transplantation.

The 2016 award ceremony will be held in San Francisco, on 23rd June, 2016.

The winners will receive:
☆ A Grand Prize of $25,000 and a Runner-Up Prize of $5,000 will be awarded.
☆ The Grand Prize Winning Essay will be published in Science; a brief abstract of the Runner-Up Essay will be published in Science.

Learn more about the Prize, visit: www.sciencemag.org/prize/boyalife/rules
advancing cancer research for a healthier world

EMD Millipore + Sigma-Aldrich come together to empower you with confidence to solve the toughest problems in life science.

Visit booth #528 at AACR April 16-20 to talk with our CRISPR experts

- Global network across more than 60 countries
- User friendly, world-class e-commerce platform
- Complete portfolio with over 300,000 products from CRISPR to Western blotting

Learn more at: sigma-aldrich.com/aacr2016
2015 Winner
Shigeki Watanabe, Ph.D.
Johns Hopkins University
For research on synaptic vesicle endocytosis

Call for Entries

Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international award which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. Researchers who are not older than 35 years are invited to apply.

You could be next to win this prize and to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply!
Learn more about the Prize and its past winners at:

www.eppendorf.com/prize
Akt Pathway Discovery
From Target Selection to Lead Profiling

Optimized solutions ensure higher quality hits resulting in fewer false leads

The Akt/PKB pathway is a popular target since it sits at the crossroads of both oncogenic and tumor suppressor signaling pathways. Enzo provides novel tools to help support cancer discovery from target selection, hit-to-lead discovery, and lead profiling.

SCREEN-WELL® Kinase Inhibitor Library
Benchmarks against 80 known kinase inhibitors with well-defined activity

PKA, PKB, PKC Kinase Activity Assays
Minimize false positives or negatives seen with fluorescent compounds

CELLESTIAL® Assays
High specificity and low background fluorescent probes for live cell analysis

Wortmannin, a PI3 Kinase inhibitor

Analysis of purified PKB activity

Multiplex assay that distinguishes between apoptosis and necrosis
Individual cell analysis for protein expression and cell type quantitative alternative to standard bulk detection methods

Detection and quantitation of proteins in biological samples is an essential task routinely performed in countless disciplines and in laboratories all over the world, for activities ranging from basic protein characterization to clinical diagnostic testing and drug development. Common methods for protein detection include enzyme-linked immunosorbent assay (ELISA), dot blot, and Western blot (also called protein immunoblot).

While these standard assays continue to present a reliable means of cell analysis for thousands of targets, recent advances in instrumentation offer significant improvements in time savings and convenience for common markers. An additional limitation of bulk assays is the need to homogenize cells or tissue, resulting in a loss of information from individual cells in a population. Techniques that detect and report signal from individual cells can provide quantitative data from large populations about protein target or other marker levels, from cells of varying phenotype, developmental state, or health status.

Quantitative data from large populations with single-cell precision

Flow cytometry addresses this need for quantitative data from significant cell populations by interrogating individual cells for the presence and relative strength of signal from fluorescent reagents or antibodies. However, traditional flow cytometers require extensive operator training and expertise, and sheath fluid-based systems are characterized by extensive setup and shutdown—as well as considerable cost to purchase, operate and maintain.

The Muse® Cell Analyzer was developed to give researchers simple, affordable access to the quantitative data that flow cytometry provides for measuring markers of viability, mitochondrial health, protease activity, and more. Built on flow cytometry principles, Muse® uses microcapillary fluidics and pre-optimized reagents to create an inexpensive, compact, portable system that requires little setup and no expertise to operate. These attributes present a rapid, simplified alternative to more time-consuming methods like Western blot (that may also demand considerable technical expertise) for routine analysis of cell culture health, and to assess the effects of compounds for toxicology and drug discovery screening.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Key materials and equipment needed</th>
<th>Hands-on time</th>
<th>Typical total assay time: From cells to data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>Coated multiwell plates, Capture antibody, Detection antibody conjugate, Enzyme substrate, Stop solution, Plate washer, ELISA reader</td>
<td>1.5 hours</td>
<td>8 hours – 2.5 days</td>
</tr>
<tr>
<td>Dot blot</td>
<td>Blot cassette, Blocking buffer, Nitrocellulose membrane, Protein standard, Primary antibody, Secondary antibody, Detection reagent</td>
<td>1.25 hours</td>
<td>5.5 hours</td>
</tr>
<tr>
<td>Lysis buffer protein quantification kit, Protein standards, SDS page gels, Electrophoresis chamber, Loading buffer, Running buffer, Transfer buffer, Protein transfer chamber, Membranes, Filter paper, Blocking buffer, Primary antibody, Secondary antibody, Gel/blot imager</td>
<td>2 – 3 hrs</td>
<td>10 hrs – 2.5 days*</td>
<td></td>
</tr>
<tr>
<td>Muse®</td>
<td>Muse® Cell Analyzer</td>
<td>10-15 mins</td>
<td>10 mins – 4 hrs.</td>
</tr>
</tbody>
</table>

Table 1. Workflow comparison among protein detection methods. For proteins not already in solution, bulk methods require lysis of samples to render proteins accessible to detection. Reagents, supplies, and equipment for preparation, transfer, probing, detection, and imaging may be needed, depending on technique. Lengthy primary antibody incubations and serial washes following each binding step can result in significant hands-on and total elapsed time, for routine protocols. The Muse® Cell Analyzer uses preoptimized reagent cocktails to minimize variation and instrument setup, resulting in appreciable reductions in time spent on the bench and total start-to-result time. *Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP i.d.® 2.0 system for Western blotting.

Summary of protocol

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Mix thoroughly and run on Muse® Cell Analyzer

Figure 1. Typical Muse® assay experimental protocol summary. Steps shown are from the protocol for the Muse® MultiCaspase Assay kit (Cat. No. MCH100109) for detection of the activity of caspases 1, 3, 4, 5, 6, 7, 8, and 9. Results from this assay are available in approximately one hour, about 20 minutes of which requires hands-on activity.
Individual cell analysis for protein expression and cell health: a quantitative alternative to standard bulk detection methods

Detection and quantitation of proteins in biological samples is an essential task routinely performed in countless disciplines and in laboratories all over the world, for activities ranging from basic protein characterization to clinical diagnostic testing and drug development. Common methods for protein detection include enzyme-linked immunosorbent assay (ELISA), dot blot, and Western blot (also called protein immunoblot).

While these standard assays continue to present a reliable means of cell analysis for thousands of targets, recent advances in instrumentation offer significant improvements in time savings and convenience for common markers. An additional limitation of bulk assays is the need to homogenize cells or tissue, resulting in a loss of information from individual cells in a population. Techniques that detect and report signal from individual cells can provide quantitative data from large populations about protein target or other marker levels, from cells of varying phenotype, developmental state, or health status.

Quantitative data from large populations with single-cell precision

Flow cytometry addresses this need for quantitative data from significant cell populations by interrogating individual cells for the presence and relative strength of signal from fluorescent reagents or antibodies. However, traditional flow cytometers require extensive operator training and expertise, and sheath fluid-based systems are characterized by extensive setup and shutdown—as well as considerable cost to purchase, operate and maintain.

The Muse® Cell Analyzer was developed to give researchers simple, affordable access to the quantitative data that flow cytometry provides for measuring markers of viability, mitochondrial health, protease activity, and more. Built on flow cytometry principles, Muse® uses microcapillary fluids and pre-optimized reagents to create an inexpensive, compact, portable system that requires little setup and no expertise to operate. These attributes present a rapid, simplified alternative to more time-consuming methods like Western blot (that may also demand considerable technical expertise) for routine analysis of cell culture health, and to assess the effects of compounds for toxicity and drug discovery screening.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Key materials and equipment needed</th>
<th>Hands-on time</th>
<th>Typical total assay time: From cells to data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>Coated multiwell plates
Capture antibody
Enzyme substrate
Stop solution
Plate washer
ELISA reader</td>
<td>1.5 hours</td>
<td>8 hours – 2.5 days</td>
</tr>
<tr>
<td>Dot blot</td>
<td>Blot cassette
Blocking buffer
Nitrocellulose membrane
Protein standard
Primary antibody
Secondary antibody
Detection reagent</td>
<td>1.25 hours</td>
<td>5.5 hours</td>
</tr>
<tr>
<td>Lysis buffer protein quantification kit</td>
<td>Protein standards
SDS page gels
Electrophoresis chamber
Loading buffer
Running buffer
Transfer buffer
Protein transfer chamber
Membranes
Filter paper
Blocking buffer
Primary antibody
Secondary antibody
Ge/Blot imager</td>
<td>2 – 3 hrs</td>
<td>10 hrs – 2.5 days*</td>
</tr>
<tr>
<td>Traditional Western blot protocols **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muse®</td>
<td>Muse® Cell Analyzer
Relevant Muse® assay</td>
<td>10-15 mins</td>
<td>10 mins – 4 hrs.</td>
</tr>
</tbody>
</table>

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

SUMMARY OF PROTOCOL

Culture cells, including negative and positive controls, for time needed to induce apoptosis.

- Dilute Muse® 10X Caspase Buffer to 1X with DI water.

Prepare cell samples in 1X Caspase Buffer for incubation with Muse® MultiCaspase Reagent working solution.

- Reconstitute Muse® MultiCaspase Reagent with 50 µL of DMSO to make stock solution.

Dilute Muse® MultiCaspase Reagent stock solution 1:160 with 1X PBS to make working solution.

Prepare Muse® Caspase 7-AAD working solution by adding 2 µL of 7-AAD to 148 µL of 1X Caspase Buffer.

Add 5 µL of Muse® MultiCaspase working solution to 50 µL of cells

Add 150 µL of 7-AAD working solution

Mix thoroughly and run on Muse® Cell Analyzer

*Significant time savings can be achieved by use of a vacuum-driven method such as the SNAP Ld® 2.0 system for Western blotting.

** Typical total assay time: From cells to data

Figure 1. Typical Muse® assay experimental protocol summary. Steps shown are from the protocol for the Muse® MultiCaspase Assay kit (Cat. No. MCH100109) for detection of the activity of caspases 1, 3, 4, 5, 6, 7, 8, and 9. Results from this assay are available in approximately one hour, about 20 minutes of which requires hands-on activity.

Merck Millipore, the M logo, SNAP Ld, and Muse are are registered trademarks of Merck KGaA, Darmstadt, Germany.
BS-GEN-16-12413 3/2016 © 2016 EMD Millipore Corporation, Billerica, MA USA. All rights reserved.
Population means vs. individual cell quantitation

Data that can be quantified are increasingly important in the life sciences, as quantitative data are objective and therefore considered more reliable, as well as being subject to statistical analysis. Quantitative data are assumed to be more representative of populations than qualitative data, and therefore must be characterized both by significant sample size and by the capacity to measure individual events in a sample.

Figure 2. Common bulk immunodetection assay results contrasted with quantitative data. A. Enzyme-linked immunosorbent assay (ELISA), left panel, uses a colorimetric or a fluorescent detection reagent. Spectrophotometry can be used to transform signal intensity into numerical values, but signal intensity is a mean from all cells or cell products in a sample, as is the case with dot blot (middle panel). The right panel is an example of fluorescent detection of immunoblot (Western blot), showing the ‘ladder’, or molecular standard, in lane 1. B. Left panel, Western blot of recombinant histone H2A.X (lane 1), recombinant histone H2A (lane 2), and acid extracted proteins from HeLa cells (lane 3) were probed with anti-histone H2A.X. The right panel shows representative data from the Muse® H2A.X activation dual detection assay, which uses two directly conjugated antibodies against the unmodified and phosphorlylated histone target to map signal from every cell in the sample onto a scatter plot. Absolute numbers and percent of cells activated in the sample are automatically calculated and displayed on the ‘Statistics’ tab.

Although spectrophotometry and densitometry can be used to transform sample well color or the size of a blot or band into numerical values for comparison of relative signal intensity among samples, these methods rely on homogenization of all of the cells or tissue in a particular sample. Western blot relies on concurrent electrophoresis of a mixture of proteins of known weight to create a standard, or ‘ladder’ of bands on the blot, to which positive bands from sample lanes are compared for confirmation of the protein’s identity (Figure 2A, right panel). Because no identity information can be gained from immunoblot without the standard for comparison, Western blot is considered ‘semi-quantitative’.

Conclusions

Immunoblot and immunosorbent assays continue to be among the most popular methods for protein detection in the life sciences, as they are amenable to measuring virtually any target for which an epitope binder such as an antibody can be developed. These methods are constrained, however, by the inability to capture population variation due to the homogenization of sample. Standard bulk methods may also not be optimal for routine screening because of the time they consume in the lab and the expertise they require in order to optimize reagents and to obtain, interpret, and troubleshoot results.

Simplified flow cytometry-based analysis presents a rapid, uncomplicated, cell-based alternative to methods such as immunoblot, particularly for routine and frequent screening of cell cultures, or for response of cell models to compounds in development for chemotherapeutics, drug discovery, cosmetics and similar applications. In addition to detecting key protein targets, The Muse® system incorporates assays for detection using familiar cell status indicators that do not rely on antibody-protein interactions, such as fluorescent membrane integrity dyes and nucleic acid binders.

The Muse® software automatically returns cell-by-cell results from these reagents, unlike microscopy or other low-throughput, time-consuming or subjective techniques for measuring their signal. Muse® assays are selected to provide an efficient means for the most essential viability, cell health, and signaling screening, and reagents are pre-optimized to minimize variation and the need for complex setup adjustments that characterize traditional open-system cytometers.

Despite its small size and remarkably simplified operation, the Muse® system returns the same powerful single-cell data as larger, more costly and complex systems. The availability of rapid, quantitative cell analysis without the need for extensive investment in supplies or trained personnel has the potential for significant impact on compound screening and cell culture model paradigms in the pharmaceutical and life science research domains.

To learn more about the Muse® Cell Analyzer and see a complete list of Muse® assays, please visit: www.emdmillipore.com/muse
All about
Biotechnology and Health Improvement

Boyalife Group is an enterprise centered on innovation in the biotechnology field covering stem cell technology and bio-pharm. Founded in 2009, Boyalife Group has more than 30 wholly-owned subsidiaries and holding companies currently, emerging as a leading brand in healthcare in China.

Become a member! Contact: career@boyalife.com
For more information, visit: www.boyalifegroup.com

DF-SCOPE™

The DF-Scope™ is a customer-inspired, multiphoton, imaging package that provides the necessary optics and electronics for the BX51WI to be used for multiphoton imaging (with the addition of a Ti:Sapphire laser). The design incorporates subassemblies from our MOM® (Movable Objective Microscope®) system including resonant and galvo scan boxes and controllers, detector paths, PMTs, PMT power supplies, scan lenses and tube lenses.

FEATURES
- Includes detector(s) and "whisper-quiet" resonant scan box.
- Upper and lower photodetectors for increased collection efficiency.
- Fully compatible with the Sutter MPC-78 Large Moving Stage.
- Designed to be controlled with the Sutter MCS Imaging Software and MScan 2.0.
- Fully compatible with most multiphoton freeware (ScanImage 5.0, Helioscan, and MScope).
- Breadboard format in scan pathway allows easy addition of photomanipulation light sources to the main scanned laser path.

SUTTER INSTRUMENT
PHONE: 415.883.0128 | FAX: 415.883.0572
EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM

AAAS Travels
GALÁPAGOS
December 10-19, 2016

Free Air from Miami!

Aboard National Geographic Islander
Galápagos is a life-list must! It is legendary for unique wildlife that has never developed an instinctive flight response to humans, making for incredible up-close encounters and fabulous photos. Travel will be aboard the comfortable expedition ship National Geographic Islander. You will be thrilled! From $6,990 pp + air.

For a detailed brochure, call (800) 252-4910
All prices are per person twin share + air.
WHEN STUDYING TISSUE IMAGES, THE MORE YOU SEE THE BETTER YOU UNDERSTAND.

Waters Full Spectrum Molecular Imaging system is mass spectrometry-based, it’s true. What mass spectrometry brings to imaging is truly amazing. Just imagine label-free, multiplexed and objective molecular information at your fingertips. With a fraction of the time and effort you put into traditional imaging techniques, you can now uncover more information than ever before. To see for yourself, visit waters.com/SEEMORE
IN A CHANGING WORLD,
HAVING COMMITTED PARTNERS
FOR CLIMATE RESEARCH IS NOT A FANTASY

CALL FOR PROJECTS
Climate Initiative is a corporate philanthropy program supporting scientific research on climate changes. 4 to 7 projects will be supported during 3 years with a 3 million euros budget. Apply online before the 2nd May 2016.
climate-initiative.bnpparibas.com

FONDATION BNP PARIBAS
To make decisions, societies rely on knowledge and multiple perspectives. Policies both within and outside science should be informed by the best available evidence. Science alone cannot translate knowledge into viable policy options; other factors include societal norms and cultural values.

One aspect of science policy is advancing the practice of science: How do we continually improve scientific methods, mechanisms, and outputs to increase the value of science to society?

Another aspect of science policy is providing the best available scientific evidence to policymakers, community leaders, and citizens. How can we most effectively provide scientific evidence that informs policy? What are the roles for scientists as individuals and for the scientific enterprise as a whole in the policy landscape? What emerging and established areas of science are essential to future policy decisions?

Call for Session Proposals

Session proposals for the 2017 AAAS Annual Meeting are now being solicited. To submit a proposal, visit aaas.org/meetings. The deadline for submission is April 22, 2016.
HIV Cure Funding Opportunity

Gilead Sciences has spent 25 years working to improve treatments for people living with HIV, with an ultimate goal in mind: finding a cure. To that end, we’ve set aside funding to support academic institutions, nonprofit organizations and community groups committed to HIV cure activities.

Visit www.gilead.com/HIV-Cure-FOA to learn more and apply for funding.

A career in cancer research? Computational skills wanted

Cancer researchers are generating mounds of molecular data on tumor biology. Scientists with molecular and computational backgrounds are needed to move the growing field of precision oncology forward. Researchers with both skill sets, however, have a leg up.

See the full story on page 250.

Upcoming Features
Regional Focus: China—June 24
Postdoc Careers—August 26
Faculty Careers—September 16

Produced by the Science/AAAS Custom Publishing Office
THE END OF PROFILING AS YOU KNOW IT.
Stop asking, “What can I measure?” Start asking, “What should I measure?” Thanks to nCounter Vantage™ assays, you get the full picture—targeted DNA, RNA, and Protein analysis in one process. Stop compromising. Stop performing sequential testing. Learn more at nanostring.com/3D
Chromatin Immunoprecipitation Kit
Native chromatin immunoprecipitation (N-ChIP) is an alternative to traditional cross-linked ChIP (X-ChIP), which removes the need for fixing cells with formaldehyde prior to extraction. As a consequence, the cells remain in a more natural “native state.” The new Chromatrap N-ChIP kit provides a quicker, easier, and more efficient way of performing N-ChIP assays (Patent No. GB2482209). It uses discs of an inert, porous polymer to which Protein A or Protein G has been covalently attached to maximize the capture efficiency of the target chromatin/antibody complex. Unlike other approaches, the Chromatrap N-ChIP kit eliminates using agarose or magnetic beads, resulting in more sample being retained during the extraction process. In addition, Chromatrap N-ChIP technology increases the affinity of antibody binding to antigens on native chromatin, as peptides are more accessible. As a result, the Chromatrap N-ChIP kit sets a new standard for enriching transcription factors from native chromatin.

Chromatrap
For info: +44-1978-66222
www.chromatrap.com

High-Throughput Evaporation
Series 3 HT evaporators are compact in design and offer a very high capacity for a wide range of sample formats including microplates, vials, and fraction collection tubes. The high-throughput (HT) design of the Series 3 HT evaporator allows up to 48 shallow-well microplates to be dried down at the same time, while capacity for standard 16 mm × 100 mm fraction collector tubes is an outstanding 288 tubes per run. To increase throughput further, several Series 3 HT evaporators may be run in parallel on an Infinity trolley system, which is designed to accommodate multiple Genevac evaporators in the optimum configuration to minimize the footprint of the supported system. Available in HT-12 and HT-6 configurations, Series 3 HT evaporators are the system of choice for high-throughput sample drying because of their high sample capacity, their unique technology that eliminates cross contamination caused by sample bumping, and automated temperature and pressure monitoring that prevents sample degradation.

Genevac
For info: +44-1473-240000
www.genevac.com

qPCR/RT-qPCR Kits
More than 200 kits are offered under the ViPrimePLUS qPCR/RT-qPCR group. All of these kits have been developed with high specific genome detection capability. They are fast, easy to use, and have high sensitivity. The ViPrimePLUS qPCR/RT-qPCR Master Mix kits are advanced formulations designed for compatibility with most real-time polymerase chain reaction (PCR) platforms on the market, with high sensitivity towards low-abundance transcripts. Vivantis is a research-based biotechnology company that was founded in 2002. The company specializes in the production of restriction enzymes, DNA extraction kits, DNA amplification reagents, and other related products for molecular biology research.

Vivantis
For info: +603-8025-1603
www.vivantechnologies.com

Data Access Software
Aureum data access software helps companies find, manage, mine, and reuse exponentially growing data assets. Researchers can use it as a tool to find previously dark historical data to promote new findings and insights. A fully integrated search service requires reindexing only when a file is changed, not when it is moved. Interoperability with the Hadoop distributed file system (HDFS) and the portable operating system interface (POSIX) empowers users to perform computations on Hadoop or Spark and store data regardless of application, storage type, or location of the original data. This interoperability, combined with permanent pathnames, allows users to “trace back” to original data when a new analysis of the source data is necessary, enabling scientists to draw correct conclusions. Aureum’s dynamically expandable data space ensures that pathnames never change. This benefits researchers looking for datasets years or even decades later, even after dozens of tech refresh cycles.

Peaxy
For info: 408-441-6500
www.peaxy.net

Analyte Identification and Quantitation
Scientists performing nano liquid chromatography-mass spectrometry (LC-MS) analyses who seek accurate quantitation and analyte identification can now use a system designed to deliver higher retention time precision and ease of use. The latest version of the UltiMate 3000 RSLCnano UHPLC system combines higher nano LC performance with versatility and ease of use. New ProFlow technology increases retention time precision, resulting in high-quality data with accurate quantitation. Additionally, the system offers reduced time and simplified system operation so that researchers can focus more time on data acquisition and analysis. The UltiMate 3000 RSLCnano offers a wide flow range (nano-to-micro flow rates) in ultra-high-performance liquid chromatography (UHPLC) mode as well as an additional micro-to-analytical flow ternary gradient pump for increased versatility. As a result, almost any low-flow workflow can benefit from this system. Dedicated kits are available for many standard and advanced (e.g., 2D) workflows.

Thermo Fisher Scientific
For info: 800-532-4752
www.thermoscientific.com/rslcnano

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/about/new-products-section for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
All it takes is a few slides to uncover meaningful variants from FFPE tumor samples

Every sample is crucial in oncology research, especially when there is very limited material available. Ion Torrent™ Oncomine™ next-generation sequencing assays utilize proven Ion AmpliSeq™ technology with low sample input requirements to help you accurately identify variants from more tumor samples and fine needle aspirates. Obtain the answers you need for your research to prevail. Pursue. Pioneer. Prevail.

To learn more about Oncomine Assays for oncology research, go to thermofisher.com/oncomine-assays

For Research Use Only. Not for use in diagnostic procedures. © 2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. CO018089 0116
What’s in Your Sample?

Choose the right immunoassay to get your answers!

Learn more | rndsystems.com/immunoassays