Too young to win a prize in Stockholm this December?

We don’t think so.
There's only one Stericup® filter. Don't be fooled.

CAUTION:

- Sterile filters are posing as high-quality Stericup® filters, but are rather thinly disguised.
- These filters may exhibit clogging, loss of volume and unwanted binding of serum proteins and other additives.
- Victims report anxiety due to potential damage to cell health.

Protein Binding Performance

Don't be fooled – EMD Millipore's history of membrane technology and filter device engineering is unmatched.

View more data and place an order for the one and only true Stericup® filter at www.emdmillipore.com/oneStericup

EMD Millipore is a division of Merck KGaA, Darmstadt, Germany
Through its Cottrell Scholar program, Research Corporation for Science Advancement nurtures outstanding teacher-scholars recognized for innovative, high-quality research as well as academic leadership skills. In addition to the 24 new scholars awarded $100,000 each this year, two accomplished Cottrell Scholars have received RCSA’s TREE Award (Transformational Research and Excellence in Education). The TREE Award celebrates integration of outstanding research and science education at America’s universities and colleges.

2016 Cottrell Scholars

2016 Cottrell Scholar Awardees

NANDINI ANANTH
Assistant Professor of Chemistry, Cornell University
Quantum Dynamic Investigations of Photo-induced Electron Transfer Catalyzed by Transition Metal Complexes

JOHN M. ANTOS
Assistant Professor of Chemistry, Western Washington University
Structural Characterization of Substrate Promiscuity in Bacterial Sortases

TAMARA BOGDANOVIC
Assistant Professor of Physics, Georgia Institute of Technology
Shedding Light on Supermassive Black Holes

EVA-MARIA SCHOETZ COLLINS
Assistant Professor of Physics, University of California, San Diego
Unraveling the Role of Mechanics for Tissue Self-organization In Vivo

KATHRYN L. HAAS
Assistant Professor of Chemistry, Saint Mary’s College, Indiana
Transporting Cu(I) as Cargo and Using Cu(III) as a Killer Cofactor

ELIZA KEMPTON
Assistant Professor of Physics, Grinnell College
Atmospheric Structure and Emission Spectrum Calculations for Extrasolar Super-Earths: Looking Toward JWST and Beyond

DUŠAN KEREŠ
Assistant Professor of Physics, University of California, San Diego
Using Cosmological Hydrodynamic Simulations to Constrain Evolution of Galaxies and Their Gaseous Halos

DMYTRO KOSENKOV
Assistant Professor of Chemistry, Monmouth University
Exciton Energy Transfer in Light Harvesting Proteins with Covalently Bound Pigments: The Role of Molecular Vibrations

WILLIAM C. K. POMERANTZ
Assistant Professor of Chemistry, University of Minnesota, Twin Cities
Fluorinated Peptides and Proteins for 19F MRI and Integrated Research Experiences in an Organic Chemistry Lab Course

AARON ROMANOWSKY
Assistant Professor of Physics, San Jose State University
The Nature and Nurture of Galaxies: Dynamics, Dark Matter, and Data Mining

MICHAEL J. ROSE
Assistant Professor of Chemistry, University of Texas at Austin
Imparting Precious Metal Properties to First-Row Metals with Heavy Atom Ligands

SCOTT K. SHAW
Assistant Professor of Chemistry, University of Iowa
Characterization and Control of Molecular Architectures within Thin Fluid Films

2016 TREE Awardees

RIGOBERTO HERNANDEZ
Chemistry, Georgia Institute of Technology, Cottrell Scholar 1999

VINCENT ROTELLO
Chemistry, University of Massachusetts, Amherst, Cottrell Scholar 1996
“RCSA believes the right combination of high-caliber research integrated with modern, interactive educational tools creates the perfect environment for scientific breakthroughs and outstanding learning outcomes for the next generation of U.S. scientists.”

Robert Shelton, President, Research Corporation for Science Advancement

For additional information visit www.rescorp.org or call 520.571.1111.
Call for Entries

Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international award which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. Researchers who are not older than 35 years are invited to apply.

You could be next to win this prize and to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply!
Learn more about the Prize and its past winners at:

www.eppendorf.com/prize

Application Deadline
June 15, 2016
The first global award for stem cells and regenerative medicine

Stem cells and regenerative medicine is the new frontier in life sciences. Boyalife, Science, and Science Translational Medicine jointly establish a global award to recognize and reward scientists in the fields of stem cells and/or regenerative medicine with a focus on developing cell-based treatments for cancer, degenerative disorders, immunotherapy and stem cells transplantation.

The 2016 award ceremony will be held in San Francisco, on 23rd June, 2016.

The winners will receive:
☆ A Grand Prize of $25,000 and a Runner-Up Prize of $5,000 will be awarded.
☆ The Grand Prize Winning Essay will be published in Science; a brief abstract of the Runner-Up Essay will be published in Science.

Learn more about the Prize,
visit: www.sciencemag.org/prize/boyalife/rules
myIDP: A career plan customized for you, by you.

Features in myIDP include:
- Exercises to help you examine your skills, interests, and values
- A list of 20 scientific career paths with a prediction of which ones best fit your skills and interests
- A tool for setting strategic goals for the coming year, with optional reminders to keep you on track
- Articles and resources to guide you through the process
- Options to save materials online and print them for further review and discussion
- Ability to select which portion of your IDP you wish to share with advisors, mentors, or others
- A certificate of completion for users that finish myIDP.

Visit the website and start planning today! myIDP.sciencecareers.org

For your career in science, there's only one myIDP: A career plan customized for you, by you.

In partnership with:

AAASTravels
Kashmir & Ladakh
September 11-23, 2016

Kashmir has long been legendary as a destination of travelers from India and beyond. Ladakh is a trans-Himalayan kingdom that retains a strong Tibetan Buddhist identity with alpine desert valleys, watered by glacial melt where surrounding peaks display an astonishing geology. Join Dr. Chris Carpenter for an amazing and intriguing adventure! $5,295 pp + air.

For a detailed brochure, call (800) 252-4910
All prices are per person twin share + air

BETCHART EXPEDITIONS Inc.
17050 Montebello Rd, Cupertino, CA 95014
Email: AASInfo@betchartexpeditions.com
www.betchartexpeditions.com

Adding efficiency to general lab equipment

Sometimes the latest equipment in a laboratory, say a next-generation sequencer, grabs lots of attention, but it’s the workhorses—centrifuges, hoods, freezers, incubators, and more—that keep experiments and workflows moving. These general lab tools often determine how smoothly and cost effectively a lab runs.

See the full story on page 614.

Upcoming Features
Microscopy—May 13
Exosomes/Microvesicles—June 10
Proteomics—July 15

Produced by the Science/AAAS Custom Publishing Office
Don’t miss the debut of Science Immunology.

Science is expanding its reach into immunology—now offering the newest online-only, weekly journal in the Science family of publications. Science Immunology will provide original, peer-reviewed research articles that report critical advances in all areas of immunological research, including studies that provide insight into the human immune response in health and disease.

Now Accepting Papers

Be a part of the Science Immunology debut issue publishing Summer 2016!

Submit your manuscript today at ScienceImmunology.org.
Adding efficiency to general lab equipment

Sometimes the latest equipment in a laboratory, say a next-generation sequencer, grabs lots of attention, but it’s the workhorses—centrifuges, hoods, freezers, incubators, and more—that keep experiments and workflows moving. These general lab tools often determine how smoothly and cost effectively a lab runs. In large part, the results can be measured in one word—efficiency. In this case, efficiency means saving energy and time. **By Mike May**

General equipment makes up a lab’s foundation. Without these crucial tools, few experiments could be performed, because nearly every research project depends on one or more of such technologies. As fundamental elements of research, general lab equipment must also be efficient. “Energy efficiency in laboratory equipment is extremely important,” says John Dillott, energy manager at the University of California, San Diego. “It’s a major, yet virtually untapped area.” He mentions that My Green Lab, a California-based nonprofit, published a 2015 report estimating that there are more than 1.2 billion square feet of laboratory space in the United States. “These spaces are three to five times more energy intensive than office areas due to energy-intensive equipment, around-the-clock operations, 100 percent outside-air requirements, and high airflow rates,” Dillott says. “Not only does laboratory equipment consume a substantial amount of energy, but anyone who has ever been in a lab knows that the heat generated by lab equipment can lead to overcompensation by heating, ventilation, and air-conditioning systems, resulting in an additional increase in energy consumption.”

By saving energy, it takes less capital to run a piece of equipment, and some of the most basic equipment consumes a lot of electricity. According to the website of the International Institute for Sustainable Laboratories (I2SL) in Arlington, Virginia: “The energy used by [plug-in] equipment (e.g., freezers, autoclaves, centrifuges) constitutes from 10 to as much as 50 percent of the total energy use in a laboratory (not including associated cooling energy use).” I2SL’s web page adds, “Many scientists, laboratory managers, and laboratory design consultants are beginning to use energy efficiency as a selection criterion for laboratory equipment, and some manufacturers are starting to advertise the ‘green features’ of their products.” In an effort to start a central database of energy-efficiency information, I2SL created the Energy-Efficient Laboratory Equipment Wiki (http://scim.ag/EELERWiki).

When considering any technology upgrade for energy efficiency, scientists wonder about the payback: How long will it take to recoup the price of the new equipment through energy savings? “Payback is a difficult question to answer as it’s dependent on the initial purchase price, the cost of energy, how the equipment is used, and the type of equipment that is being replaced,” says Allison Paradise, executive director of My Green Lab. “In addition, so few studies have been done on energy consumption of laboratory equipment that it’s often difficult to know, without metering, what the baseline energy consumption is of the existing equipment and what the energy consumption is of the new equipment.” She adds, “Our nonprofit cofounded the Center for Energy Efficient Laboratories (CEEL) to address this specific need”—gathering real-world data on the energy used by general lab equipment. Only with those data in hand can scientists choose the most efficient devices.

Go with less flow

Of all of a lab’s general equipment, fume hoods probably carry the most energy-inefficient reputation, and with good reason—at least for older equipment. “Market Assessment of Energy Efficiency Opportunities in Laboratories,” prepared by Paradise, indicates that fume hoods consume far more energy than other standard pieces of equipment, more than twice as much as a −80°C freezer (when considering the highest end of the energy-consumption range for both hood and freezer), which is the second-highest energy consumer among a lab’s general equipment. Other sources agree on the energy intensity of fume hoods. As noted by Harvard University’s Green Labs Program: “Fume hoods are one of the most energy-intensive types of equipment in a laboratory environment, but significant savings can be achieved by keeping them closed when not in use.” That advice works for a fume hood of any age.

Making a fume hood more energy efficient depends largely on how air flows through it. One solution is provided by Labconco in Kansas City, Missouri, whose three-speed blower on its fume hoods offers flow-rate options. “This came from market demand—people wanted to turn down the blower at night, like a night setback mode,” says
Beth Mankameyer, sales engineer at Labconco and certified as a Leadership in Energy and Environmental Design (LEED) Green Associate by the U.S. Green Building Council. “They wanted their hood to exhaust less volume while it was unoccupied at night.”

The motor in a fume hood blower also matters. For example, Labconco’s three-speed blower uses an electronically commutated motor, which is more energy efficient than a traditional alternating current (AC) motor.

The electronics that control a fume hood also play a part in its energy efficiency. At TSI in Shoreview, Minnesota, saving energy in a fume hood comes from a sophisticated controller. According to the company website, its fume-hood controller adjusts the flow velocity for containment and safety, but it also “reduces laboratory airflow usage, optimizing energy savings.”

When it comes to a return on investment, a fume hood might make the best bet. “The three-speed blower can pay for itself in a very short amount of time,” says Mankameyer, “not only because of reduced energy costs at the hood but because less air needs to be conditioned for the lab.” The actual time of the payback depends on many factors, including the lab’s heating, ventilation, and air conditioning system, and how much a fume hood gets used, among others. But no matter what, a more energy-efficient fume-hood system will save on operational costs.

Air movement also matters in incubators, where the air’s composition comes into play. To keep an incubator effectively doing its job, the technology must include an easy way to decontaminate the device. In some incubators, that requires half a day of high heat. Instead, using a vapor hydrogen-peroxide method takes only four hours, says Kara Held, science director at The Baker Company in Sanford, Maine. That saves energy and time. So, as incubators reveal, the energy savings is not only about ordinary running, but also relates to the overall energy use for all operations of the technology.

For both hoods and incubators, modern versions provide forms of efficiency beyond saving energy. The three-speed fan can be set to automatically slow down during off hours, and some controls can do the same. That way, the lab manager can be sure of getting the best efficiency—in saving money and time. In addition, modern incubators, says Held, do a better job of controlling the conditions for cells. “You can find the optimal conditions, and they will stay there and not be affected by the external environment or room where the incubator is located.”

That’s because of improved sensors that control more features, such as temperature, humidity, oxygen, and carbon dioxide. To ensure your cells experience the optimal conditions as much as possible, explains Held, be sure to check how long it takes an incubator to reestablish the internal conditions after opening the doors. If it takes 20 to 30 minutes, be aware that other incubators can do it faster—often in half that time.

Keep it cool
Many items in a lab, from reagents to cell lines, need to be kept cool, even frozen—sometimes deeply frozen. All freezers are big consumers of energy, some more than others. “Generally speaking, ultra-low temperature freezers, –80°C, are some of the largest consumers of energy in life science research labs,” Dilliott says. “Individually, each freezer can consume as much energy as a single-family home, 20 to 25 kilowatt hours per day.”

As a general rule of thumb, Dilliott says, “It is worth noting that any piece of equipment that requires an operating set temperature or pressure and is kept on 24/7 is likely to consume a lot of energy.”

For lab-freezer shoppers, a new one can be much more efficient, but that’s not always the case. “It depends on the freezer,” Dilliott says. “Several models have been designed with energy efficiency in mind . . . often consuming 60 percent less energy than freezers using older technology.”

He adds, “These numbers are supported by the long-term metering data collected at the University of California, San Diego and at other organizations across the country.”

Depending on the lab in question, upgrading a freezer could be even more efficient than expected. For example, Dilliott says, “The savings realized by UC San Diego’s replacement of old freezers with more energy-efficient ones resulted not only in an operational cost reduction for the university, but also in additional rebates from the utility company.”

Some vendors do focus on overall energy efficiency in freezers. Santanu Das from technical product support at VWR International in Radnor, Pennsylvania, says, “VWR General-Purpose Upright Freezers, which maintain –20 or –30°C, are available with manual or automatic defrost and are designed to provide dependable, energy-efficient performance.” He adds that they are manufactured with chlorofluorocarbon (CFC)-free high-density urethane. cont.>
Featured Participants

<table>
<thead>
<tr>
<th>Harvard University’s Green Labs Program</th>
<th>TSI</th>
<th>www.tsi.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>green.harvard.edu/programs/green-labs</td>
<td>University of California, San Diego</td>
<td>ucsd.edu</td>
</tr>
<tr>
<td>IKA Works</td>
<td>VWR International</td>
<td>us.vwr.com</td>
</tr>
<tr>
<td>www.ika.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Institute for Sustainable Laboratories</td>
<td></td>
<td>www.i2sl.org</td>
</tr>
<tr>
<td>www.i2sl.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labconco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.labconco.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>My Green Lab</td>
<td>Energy-Efficient Laboratory Equipment Wiki</td>
<td>labs21.lbl.gov/wiki/equipment</td>
</tr>
<tr>
<td>www.mygreenlab.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Baker Company</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.bakerco.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermo Fisher Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.thermofisher.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

foam cabinet and door insulation to maintain temperature stability. Those features help to reduce the energy required by any freezer.

In Cambridge, Massachusetts, Harvard’s Green Labs Program goes beyond the freezer technology and reveals energy-saving tips in using freezers. For example, this program recommends keeping your freezer organized so that you know where to look when you open the door and will thus open it less and for less time. As the program’s website states: “By limiting door openings you will save energy and increase the life of your freezer.”

VWR freezers can also be easier to organize and access. In describing VWR’s ultra-low temperature freezers, Das says, “Four gasketed inner doors are standard, creating four compartments that can be subdivided with adjustable interior shelves.” That design allows for better organization and easier location of items, which should lead to less time with the door open.

To help vendors design better freezers in the future, the CEEL is collecting energy-use data on existing ~80°C freezers. Scientists can help by taking part in a 10-minute survey (https://www.surveymonkey.com/r/CEEL_ULTFreezers). “All responses will remain completely confidential,” Paradise says. “You will not be contacted by any vendors as a result of your participation.”

Other changes can make your existing freezer use less energy. With a ~80°C freezer, Paradise says, “Changing the set point to ~70°C can save 20 to 30 percent, depending on the age of the freezer and its baseline energy consumption, according to the U.S. Department of Energy.” She adds, “My Green Lab has a saying that ‘~70 is the new ~80,’ and we like to encourage people to chill up their freezers.”

Simpler spinning

For some general laboratory equipment, the main improvement in efficiency comes from ease of use. That is the case with centrifuges.

“A centrifuge is a fundamental piece of separation equipment,” says Hugh Tansey, worldwide product director at Thermo Fisher Scientific, headquartered in Waltham, Massachusetts, “and scientists want it to be easy to use and be more productive.” Today’s centrifuges allow scientists to easily change the rotor to spin down mixtures in microtubes, microplates, cell-culture containers, and so on.

In some cases, efficiency comes from being sure that a centrifuge does what you need it to do. For example, Daniela Dockweiler, senior application specialist at IKA Works in Staufen, Germany, says, “Today’s centrifuges provide constant speed while the rotor is attached on the drive shaft, even if there is a higher density of a liquid.” She adds that this consistency provides “reproducible results for all samples in one experiment.”

Some advances in centrifuges, like carbon-fiber rotors, also improve energy efficiency. “These are lightweight, corrosion-resistant, and durable, and enable much higher performance,” says Tansey. “This rotor can spin up and down faster, so the centrifuge uses less energy.”

Keep it organized

In almost any lab, the list of general equipment gets pretty long. That makes it complicated to figure out the best way to keep a lab efficient. Held once worked as the lab manager for a facility with 24 incubators. To keep everything organized, she recommends, “Build little zones into the lab, so that the equipment for one task is in the same area.” Also, she suggests building a spreadsheet that includes all of the lab’s equipment. That lets you keep track of what you have in the lab, as well as when it was purchased and serviced.

Staying organized also helps a lab manager decide when something should be replaced. When asked about how to make that decision for a piece of general lab equipment, Held says, “It depends on the lab’s funding and what the equipment is being used for.” She adds, “For very general equipment, you usually wait until it breaks and the cost of fixing it is close to the cost of buying a new one.”

To keep a lab working as efficiently as possible, though, it’s worth thinking about replacing general equipment earlier in some cases. For example, a new hood might soon save a lab more than it costs. Likewise, a new freezer might be easier to keep organized than an old one. In the end, the most efficient lab—in terms of energy and time—gets the most done.

Mike May is a publishing consultant for science and technology.

DOI: 10.1126/science.opms.p1600104
Blue LED Transilluminator
Over the last few years, the use of blue light illumination for the excitation of some dyes (including ethidium bromide) has increased. The most significant reasons for this are that blue light around 470 nm is “safe” and does not have the hazards associated with the use of ultraviolet (UV) illumination, and also that blue light does not damage the DNA sample. Herolab’s four new models cover filter sizes from 11 cm x 14 cm up to a large 22 cm x 28 cm version, and use special filter glass for optimum blue light excitation. The illumination is provided by premium-quality blue light-emitting diodes (LEDs) that render a homogenous area of light because of the high-quality diffuser screen. This homogeneity is essential for ensuring evenly illuminated gels with good image quality and accuracy when undertaking analysis. Furthermore, the enhanced filter and lighting configuration ensures a reduced background signal, aiding the capture of high-contrast images that are ideal for publication purposes and for working in preparative modes.
Herolab
For info: +49-(0)-6222-5802-0 www.herolab.de

70°C Walk-In Chamber
A revolutionary 70°C walk-in chamber, the Polar50 is a 50-m³ chamber that offers customers from industry and academia a unique opportunity to store biological, pharmaceutical, and medical products at ultralow temperatures. This capability includes storage of cell lines/extracts, DNA/RNA, blood, tissue, and many other substances. The chamber provides 70°C storage capabilities with a ±1% tolerance. This temperature is maintained by a purpose-designed, dual refrigeration system that provides 100% operating redundancy to ensure 24/7 compliance for a consistent and controlled environment. The Polar50 is available not only for outsourced storage, but is designed to allow easy installation into any existing stability suite, eliminating the need for multiple upright freezers and offering significant savings in power usage, floor space, and costs.
Source BioScience
For info: +44-(0)-115-973-9012 www.sourcebioscience.com

Filtered Chemical Workstations
Isola Series Filtered Chemical Workstations are the next advanced solution in ductless technology. These workstations are high-efficiency products that protect the end user and the environment from hazardous chemical fumes and vapors. Their key safety feature is the filtration matrix, which consists of three stages of filtration media that effectively adsorb and capture a wide range of contaminates. The Isola Filtered Chemical Workstation Series offers three models, providing customers a variety of options without compromising safety. The Isola VUE features a 360° clear viewing area, which makes it ideal for demonstration experiments. The Isola PRO is a polypropylene-filtered workstation, providing excellent chemical resistance for corrosive applications. The Isola EDGE offers a dual-wall, thermally fused solid polypropylene main chamber, allowing the installation of common laboratory fixtures and electrical outlets if needed.
Mystaire
For info: 877-328-3912 www.mystaire.com

Environmental Chambers
A new range of 230-V environmental chambers are designed to provide highly stable environmental conditions. There are two models available in the range: the wide temperature units with humidity control (available in 311 L and 821 L) and a heat-only model (available in 821 L) that is tailored for large-scale clinical applications and microbiology. For applications requiring close control of a CO₂ environment, there’s an optional infrared CO₂ package available that can be added to the wide temperature model. The interior of the environmental chambers is designed for stability. The horizontal laminar airflow system enables ideal temperature conformity and fast recovery rates, which provide an optimal growth and testing environment even with large product loads or heat-generating equipment. The environmental chambers feature a broad temperature range spanning from 0°C to 60°C, and the relative humidity is easily controlled to meet the needs of different applications.
Thermo Fisher Scientific
For info: 800-556-2323 www.thermoscientific.com

Electronically submit your new product description or product literature information! Go to www.sciencemag.org/about/new-products-section for more information.

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by Science or AAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier.
want new technologies?

antibodies
apoptosis
biomarkers
cancer
cytometry
data
diseases
DNA
epigenetics
genomics
immunotherapies
medicine
microbiomics
microfluidics
microscopy
neuroscience
proteomics
sequencing
toxicology
transcriptomics

watch our webinars

Learn about the latest breakthroughs, new technologies, and ground-breaking research in a variety of fields. Our expert speakers explain their quality research to you and answer questions submitted by live viewers.

VIEW NOW!
webinar.sciencemag.org

Brought to you by the Science/AAAS
Custom Publishing Office

@SciMagWebinars
Time for change.

Introducing Monarch™ Nucleic Acid Purification Kits

It’s time to transform your DNA purification experience. NEB’s Monarch Nucleic Acid Purification Kits are optimized for maximum performance and minimal environmental impact. With an innovative column design, buffer retention is prevented, eliminating risk of carryover contamination and enabling elution in smaller volumes. The result – highly pure DNA for your downstream applications.

Make the change and migrate to Monarch today.

Optimized design of Monarch Miniprep Columns

- Labeling tab and frosted surface provide convenient writing spaces
- Made with less plastic for reduced environmental impact
- Unique, tapered design eliminates buffer carryover and allows for elution in as little as 30 µl
- Binding capacity up to 20 µg
- Column tip is compatible with vacuum manifolds

Request your free sample at NEBMonarch.com