
TIME SERIES ANALYSIS

Information leverage in interconnected
ecosystems: Overcoming the curse
of dimensionality
Hao Ye and George Sugihara*

In ecological analysis, complexity has been regarded as an obstacle to overcome. Here we
present a straightforward approach for addressing complexity in dynamic interconnected
systems. We show that complexity, in the form of multiple interacting components, can
actually be an asset for studying natural systems from temporal data. The central idea is
that multidimensional time series enable system dynamics to be reconstructed from
multiple viewpoints, and these viewpoints can be combined into a single model. We show
how our approach, multiview embedding (MVE), can improve forecasts for simulated
ecosystems and a mesocosm experiment. By leveraging complexity, MVE is particularly
effective for overcoming the limitations of short and noisy time series and should be highly
relevant for many areas of science.

C
omplex interconnected systemspose amajor
challenge to scientific study in a variety of
fields, including ecology, finance, neuro-
science, andmedicine (1–4). Althoughwidely
used, the common approach of reducing

these systems to linearly independent compo-
nents overlooks important interactions for the
sake of computational tractability. Thus, many
statistical frameworks (e.g., principal compo-
nents analysis, generalized linearmodels, multi-
variate autoregressivemodels) assume that causal
factors do not interact with each other and have
independent or additive effects on a response
variable. This simplification can lead to prob-
lems in identifying associations (5, 6) or pre-
dicting out-of-sample behavior (7). Conversely,
complex equation-based models that explicitly
account for each interaction [e.g., end-to-end
ecosystem models (8)] have great intuitive ap-
peal but often have too many parameters to be
precisely determined given the available data [the
“curse of dimensionality” (9)], even assuming that
the model structure is generally correct. These
issues are particularly acute in biological fields
where the relevant units (e.g., species or other
variables) may not behave according to funda-
mental equations (10) and where data sets are
often cross-sectionally wide (e.g., census many
interacting species) but short in the time dimen-
sion (11, 12).
One solution to the problem of uncertain

model structure and unknown model equations
is the framework of empirical dynamic modeling
(EDM) (13–15), which uses attractor manifolds
reconstructed from time series data to enable the
study of systems [see brief introductory anima-
tion http://tinyurl.com/EDM-intro (5)]. If system

behavior is governed by deterministic rules, then
attractor manifolds exist and can be built from
lags of a single variable (16) ormultivariately from
combinations of variables (15, 17, 18). However,
because thesemanifolds are empirical, data limi-
tations can be problematic, especially when time
series are short and noisy. For example, with
short time series, reconstructed attractorsmay be
sparsely populated, which impedes accurate in-
ference of dynamics from nearest neighbors.
Furthermore, observational error will result in
reduced precision; evenwhen time series are long
enough to densely populate the attractor, the
nearest neighbors may not form a smooth map.
Herewe introducemultiview embedding (MVE)

as a general approach that exploits complexity
to amplify information and address these issues.
The basic idea is straightforward. In intercon-
nected systems with multiple time series obser-
vations, many different variable combinations
are possible (16–18) (Fig. 1A). Each reconstruc-
tion created from a particular combination of
variables can be thought of as a caricature (view)
of the system that contains distinctive informa-
tion when constrained by finite and noisy data
(19). For example, Fig. 1B show predictions for a
three-species food-chain simulation (20) using
models built on the same 25-point time interval.
Here, predictions are produced from univariate
models (views using lags of single variables x, y,
or z), and each model view exhibits distinct
errors. Even with valid embedding coordinates,
25 points may be too few to fully resolve the
system behavior—that is, the manifold may be
too sparse, especiallywith observation error.How-
ever, because each view is better at resolving
different portions of the system, amore complete
model should be possible through combination.
A simple and straightforward implementation

to combine multiple views is as follows: In con-
trast to conventional simplex projection (13),
where a forecast is based on the weighted aver-
age of the nearest neighbors in a single view

(Fig. 2A), we examine the top k reconstructions,
and use the single nearest neighbor from each
(Fig. 2B). The MVE forecast (e.g., for variable y)
is then defined as a simple average

ŷtþ1 ¼
1

k

Xk
i¼1

ynniðtÞþ1

where nni(t) is the time index of the nearest
neighbor in the ith attractor. In essence, this
approach is intended to mitigate prediction er-
rors that occur when nearest neighbors are mis-
identified or inaccurately weighted based on
distance (e.g., due to finite, noisy data). Instead,
each of the k neighbors comes from a different
view of the system; thus, each corresponding
prediction ½ynniðtÞþ1� is effectively weighted by
how frequently it appears as a nearest neighbor
among the top k reconstructions. This is a more
robust indication of its true similarity to the
target point. This simple implementation ofMVE
produces forecasts that are substantially better
at covering the full range of system behavior
than the individual univariate models (Fig. 1, B
and C).
The information leverage ofMVE follows from

two results on dynamic systems arising from
Takens’ theorem (16): Causal effects are recorded
in the time series of affected variables (5), and
each combination of variables and lags is a valid
embedding (17, 18). These two properties mean
that the interconnectedness of complex systems
is actually a boon: Whenever variable x has an
influence on some other variable y, information
about x is recorded in y and can be recovered.
Because each embedding filters this information
in a different way, combining multiple models
can be highly advantageous (Fig. 1C)—an advan-
tage that increases as the system becomes more
complex. In fact, the number of possible recon-
structions grows combinatorially with the number
of variables. Given l lags for each of n variables,
the number of E-dimensional variable combi-
nations is

m ¼ nl
E

� �
− nðl − 1Þ

E

� �

For a simple system with 10 variables (and up
to three lags each), the number of distinct three-
dimensional combinations is nearly 3000. Although
all variable combinations are valid embeddings,
with limited data theywill not resolve the system
equally well. Therefore, we use only the top k
reconstructions, as ranked by in-sample forecast
accuracy (r, correlation between observations and
predictions), and apply the heuristic of k ¼ ffiffiffiffiffi

m
p

(21–23).
To quantify performance, we compare the out-

of-sample forecast skill of thismultimodel approach
with standard nonlinear methods: a univariate
model using only lags of the variable being fore-
cast and a multivariate model defined by the var-
iable combination with the highest in-sample r.
Figure 3 shows this comparison for three simple
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ecosystem simulations with 10% observational
error [methodological details in (24)]: a three-
species coupled logistic, a three-species food chain
(20), and a three-stage flour beetle model (25). In
nearly all conditions, MVE produces better fore-
casts (higher r) compared with the univariate
and multivariate methods. Results were broadly
similar when repeated with a more complex 12-

species resource competition system (26) (figs. S1
and S2).
As a final test, we repeated the analysis using

time series data from an 8-yearmesocosm experi-
ment of a plankton community isolated from the
Baltic Sea (27, 28). This experimental field system
exhibits coupled oscillations between predator
and prey species, providing a natural experiment

for testingMVE.Here, we focus on a subsystemof
two predators (rotifers and calanoid copepods)
that consume two prey (picocyanobacteria and
nanoflagellates) (Fig. 4A). A causality test (5)
verifies that both prey affect both predators
(Fig. 4B), indicating that prey abundances are
informative for predicting predator abundances.
Just as with the model systems, the multiview
approach outperforms the other methods (Fig.
4C). In all cases, other metrics produce qualita-
tively identical results (figs. S3 to S6).
An important concern with any modeling

framework is how well it accommodates obser-
vational error. For EDM, noise in the datameans
that reconstructed states of the system are un-
certain, affecting all calculations, including the
computed distances between states, identifica-
tion of nearest neighbors, and the final forecast.
Depending on the system dynamics and the
particular variable combination used for the re-
constructed attractor, observational noise can
cause large forecast errors (19). Our results indi-
cate that as more observational noise is added,
forecast skill for all threemethods decreases (figs.
S7 to S12). However, the use of multiple views in
MVE can reduce the effects of noise. Thus, with
particularly noisy data, the information advan-
tage of combining multiple views can be more
important than selecting a single best model
(including the “true” multivariate model com-
posed of the original state variables). This ap-
proach to noise reduction builds upon historical
approaches in nonlinear state space reconstruc-
tion (19, 29) and operates in a way that is fun-
damentally different from classical frameworks
that seek to filter noise by using assumptions
about the underlying dynamics and noise struc-
ture [e.g., Kalman filters (30)].
With longer time series, the single-viewmulti-

variatemethod (using native coordinates) should
perform about as well as MVE. With sufficiently
long time series, the performance of the two
methods is nearly indistinguishable in the ab-
sence of observational error (figs. S13 and S14).
However, even with small amounts of noise (i.e.,
10% added variance), the multivariate approach
produces less skillful forecasts thanMVE (Fig. 3),
suggesting that noise, rather than data length,
is the limiting factor. Thus, given the practical
constraints of collecting longer time series (true
for many natural systems and particularly true
for ecosystem studies constrainedby short funding
horizons), these results show how it can be highly
beneficial to combine disparate data sets to lever-
age signal in synchronous observations.
Nevertheless, it is important that time series

be long enough to sufficiently sample the system
dynamics. The procedure of selecting the best
views can be sensitive to short data segments
that are nonrepresentative. For example, the best
representation of the systembehavior can change
over time as dynamics pass through different
regimes, such as in our 12-species resource com-
petition model where different groups of species
are active at different times (26). As a result, with
very short temporal data, the multivariate and
MVE methods (which rely on in-sample forecast
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Fig. 1. Schematic for multiview embedding using the three-species food-chain model. (A) By
combining multiple time series observations of the system, different attractor reconstructions (i.e., views
of the system dynamics) are created. Here, the univariate reconstructions using lags of x (red), y (green),
or z (blue) are depicted. (B) Forecasts based on univariate views of the system (from the same 25 time
points of data) give incomplete coverage of the system attractor (gray lines) (20). Note that the 1000 pre-
dictions (solid points) from each univariate model occupy distinct subsets. (C) Combining information from
multiple reconstructions [spanning the same 25 time points in (B)], the MVE model gives a clearer depic-
tion of the actual dynamics, resulting in predictions that span more of the original system attractor.
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skill to select the best views) may show biases
[e.g., forN11 with 25 data points (figs. S1 and S2)].
Even in simple systems, 25 time points may not
provide full coverage of the system (gray areas
in Fig. 1C), so it is to be expected that longer
time series may be needed if the dynamics are
more complex and pass through different regimes.
The example implementation of MVE given

here is based on simple model averaging. Where-
as this approach has the advantage of transpar-
ency and parsimony (involving few parameters),
more sophisticated implementations should great-
ly enhance forecast skill. For example, rather than
using the k ¼ ffiffiffiffiffi

m
p

heuristic (21), the optimal
number of reconstructions can be tuned. In some
cases, forecast skill may be maximized for small
k, but in other cases, accuracy continues to increase
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Fig. 2. Nearest-neighbor selection on attractor manifolds. (A) In the native system view, the nearest
neighbors (solid orange points) to the target point (black) are used to predict the future trajectory.
(B) MVE selects the single nearest neighbor in each of the different views to produce a more robust
model. Here, the nearest neighbors (red, green, and blue) to the target point (black) from the three
univariate views (based on lags of x, y, or z, respectively) are used to forecast the future behavior of
the target.

Fig. 3. Comparison of forecast skill for univariate, multivariate, and MVE methods on simulated
data with 10% observational error. (A to C) Forecast skill (r, correlation between observations and
predictions) versus library size for variables x, y, and z in the three-species coupled logistic. Solid lines
indicate average values over 100 randomly sampled libraries; dashed lines denote upper and lower
quartiles. (D to F) Same as (A) to (C) but for the three-species food-chain model (20). (G to I) Same as
(A) to (C) but for the flour beetle model (25).

Fig. 4. Analysis of the long-term mesocosm
experiment. (A) The subsystem examined in this
work (27, 28). (B) Cross mapping between grazers
(calanoid copepods and rotifers) and prey (nano-
flagellates and picocyanobacteria) indicates a causal
influence of the prey on the grazers. (C) Forecast
skill (r) is higher for MVE than for the univariate or
multivariate methods.
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until nearly all variable combinations are con-
sidered (figs. S15 to S20). Moreover, alternative
criteria for selecting candidate views may be de-
sirable to address specific objectives. For exam-
ple, a more robust but less specifically predictive
model could be constructed by selecting varia-
ble combinations that are maximally distinct.
With enough data, it should even be possible to
identify optimal weightings of the different views
or have such weightings be state-dependent (e.g.,
to correct for the state-dependent biases of in-
dividual views). Regardless of details, the imple-
mentation of MVE demonstrated here is intended
to be as simple as possible.
The main innovation of MVE is to leverage

the interconnectedness (the shared information)
of complex systems. As seen in Fig. 3, improve-
ments in forecast skill can be especially evident
for short time series (~25 time points). This
result is especially promising given that many
current ecological data sets are wide in scope,
with many different variables being tracked, but
shallow in terms of time series length. Further-
more, the noise-mitigating aspects of MVE are
potentially useful for many other applications
such as reconstructing historical behavior, sig-
nal processing (31), or nonlinear system control
(32). Although the high-dimensionality of com-
plex systems is typically perceived as an obstacle,
such complexity is actually an advantage, leading
to better clarity and prediction.
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SINGLE-CELL GENOMICS

Div-Seq: Single-nucleus RNA-Seq
reveals dynamics of rare adult
newborn neurons
Naomi Habib,1,2,3* Yinqing Li,1,2,3,4* Matthias Heidenreich,1,2,3 Lukasz Swiech,1,2,3

Inbal Avraham-Davidi,1 John J. Trombetta,1 Cynthia Hession,1

Feng Zhang,1,2,3,5,6† Aviv Regev1,7†

Single-cell RNA sequencing (RNA-Seq) provides rich information about cell
types and states. However, it is difficult to capture rare dynamic processes, such
as adult neurogenesis, because isolation of rare neurons from adult tissue is
challenging and markers for each phase are limited. Here, we develop Div-Seq,
which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling
of proliferating cells by 5-ethynyl-2′-deoxyuridine (EdU) to profile individual
dividing cells. sNuc-Seq and Div-Seq can sensitively identify closely related
hippocampal cell types and track transcriptional dynamics of newborn neurons
within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq
to identify and profile rare newborn neurons in the adult spinal cord, a noncanonical
neurogenic region. sNuc-Seq and Div-Seq open the way for unbiased analysis of
diverse complex tissues.

S
ingle-cell RNA sequencing (scRNA-Seq) has
extended our understanding of heteroge-
neous tissues, including the central nervous
system (CNS) (1–3). However, dynamic pro-
cesses, such as adult neurogenesis, remain

challenging to study by scRNA-Seq. First, scRNA-
Seq requires enzymatic tissue dissociation (Fig.
1A), which may compromise the integrity of neu-
rons and their RNA content, skew data toward
easily dissociated cell types, and is restricted to
fetal or young animals (1). Second, it is difficult to
capture rare cell types, such as adult newborn neu-
rons (4), because of limitations in cell tagging and
isolation at each phase of the dynamic process.
We therefore developed Div-Seq, a method

for RNA-seq of individual, recently divided cells.
Div-Seq relies on sNuc-Seq, a single-nucleus iso-
lation and RNA-Seq method compatible with
frozen or fixed tissue (Fig. 1A), which enables
enrichment of rare labeled cell populations by
fluorescence-activated cell sorting (FACS) (fig.
S1). Div-Seq combines sNuc-Seq with pulse label-
ing of dividing cells by 5-ethynyl-2′-deoxyuridine
(EdU) (5, 6).
We validated that sNuc-Seq on population

of nuclei faithfully represents tissue-level RNA
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and offers a way forward in ecological forecasting.
data sets, they show how this approach enhances the tractability of complex data from multiple interacting components
noisy time series that are common in ecology and other disciplines such as economics. Using examples from published 
and Sugihara introduce an analytical approach called multiview embedding, which harnesses the complexity of short,
ecosystems over time. Yet ecological time series can be relatively short, owing to practical limits on study duration. Ye 

Ecology concerns the behavior of complex, dynamic, interconnected systems of populations, communities, and
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