STRUC TURAL BIOLOGY
Zika virus is fit to be tied
Zika virus (ZIKV) has been associated with fetal microcephaly and Guillain-Barré syndrome. Other mosquito-born flaviviruses, such as dengue virus, encode noncoding subgenomic flavivirus RNAs (sfRNAs) in their 3′ untranslated region that accumulate during infection and cause pathology. Akiyama et al. now report that ZIKV also produces sfRNAs that resist degradation by host exonucleases in infected cells. The authors solved the structure of one of ZIKV’s sfRNAs by x-ray crystallography and found that the multi-pseudoknot structure that it adopts underlies its exonuclease resistance. —KLM

VACCINATION
Protecting by changing the code
Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge. —KLM

HEMATOPOIESIS
How to maintain hematopoietic stem cells
Hematopoiesis provides the body with a continuous supply of blood cells (see the Perspective by Sommerkamp and Trumpp). Taya et al. report that amino acid content is important for hematopoietic stem cell (HSC) maintenance in vitro and in vivo. Dietary valine restriction seems to “empty” the mouse bone marrow niche. Ito et al. used single-cell approaches and cell transplantation to identify a subset of HSCs at the top of the HSC hierarchy. Self-renewal relied on the induction of mitophagy, a quality-control process linked to a cell’s metabolic state. Both studies may be helpful in improving clinical bone marrow transplantation. —BAP

OXIDATIVE STRESS
Overactive antiviral responses in lupus
Detection of viral RNAs causes oligomerization of mitochon- drial antiviral signaling (MAVS) protein, which leads to the production of type I interferons (IFNs). Buskiewicz et al. found that MAVS oligomerization in the absence of virus may contribute to lupus disease severity. Mitochondrial reactive oxygen species (ROS) induced MAVS oligomerization and type I IFN production in uninfected cells. The MAVS C79F variant, which is associated with decreased lupus severity, did not oligomerize in response to ROS, and cells expressing this variant produced less type I IFN. —JFF

PLANT BIOLOGY
Targeting tip growth
Tip growth, which characterizes cells as diverse as root hairs and brain neurons, depends on secretory vesicles to add new plasma membrane in a defined subdomain. Bloch et al. show that in growing Arabidopsis pollen tubes, the exocyst subunit SEC3a is a target for secretory vesicles at the tip. SEC3a localization defines the axis of growth and the domain where new pectin is added to the cell wall. Pollen tubes of tobacco, which are faster than those of Arabidopsis, showed more complex patterns: During isotropic growth, SEC3a was distributed in a broad subapical domain, whereas during rapid elongation growth, SEC3a was localized to the apical tip. —PJH

IN OTHER JOURNALS
Edited by Caroline Ash and Jesse Smith

Acquiring the genes to digest wood
The larvae of the invasive Asian longhorned beetle burrow into and kill trees. On sequencing the genome, McKenna et al. found that gene transfers from fungi and bacteria, followed by functional evolution and gene family expansions, appear to have conferred the ability to the beetles to find plants, digest cellulose, and nullify harmful compounds made by the plants. Interestingly, other wood-feeding beetles appear to have undergone a similar evolutionary trajectory, one that is distinct from that of wood-feeding insects such as termites. —LMZ

Insect Genomics

Insect Longhorned beetle larvae digest wood by using acquired genes.

Edited by Jesse Smith and Caroline Ash

2 DECEMBER 2016 • VOL 354 ISSUE 6316 1115
**CELL BIOLOGY**

**Getting an UPR hand on recovERy**

The endoplasmic reticulum (ER) is an intracellular membranous labyrinth that provides the entry point to the secretory pathway. During proteotoxic stress, the ER expands to cope with the added burden of misfolded or unfolded proteins. This is termed the unfolded protein response (UPR). Fumagilli et al. asked how, after the stress is removed, the cell returns its ER to normal levels. In cultured mammalian cells, they uncovered a process called “recovER-phagy.” During recovER-phagy, excess ER membranes are targeted for destruction. Unexpectedly, a component of the ER protein translocation machinery, Sec62, appears to provide a key autophagy receptor in this process, independently of its canonical function. —SMH


**ANIMAL DEVELOPMENT**

**Keeping tissue layers separate**

Gastrulation is the conversion of an embryo from a single sheet of pluripotent cells into a structure with multiple tissue layers. This process establishes the future body plan and is highly conserved among metazoans. In vertebrate embryos, the transcription factor Brachyury delineates the middle tissue layer (the mesoderm) from the outer (ectoderm) and the inner (endoderm) layers. Yasuoka et al. discovered that in coral embryos, which lack a mesoderm, *brachyury* is regulated by the same signaling pathway as that found in vertebrates. In corals, it demarcates ectoderm from endoderm and is essential for the development of the mouth-anus. —SH


**HUMAN BIOLOGY**

**Neuron development in human embryos**

Mammalian fertility depends on the secretion of gonadotropin-releasing hormone (GnRH) from a population of specialized neurons residing in the hypothalamus. During embryogenesis, these neurons develop at the olfactory placodes, and they subsequently migrate to the brain. Very little is known about the process in humans, however. Casoni et al. have studied this in depth by using donated human embryonic tissue. They tracked the differentiation and migration of GnRH neurons through the first trimester of gestation by examining samples at different developmental stages and identified important differences between humans and rodents. Unexpectedly, they also found that some of these neurons migrate to extra-hypothalamic regions of the brain, suggesting that they play roles in other processes not linked to fertility. —SH


**ROBOTICS**

**Autonomously eat, digest, move, repeat**

Truly autonomous robots require a robust and independent way to move and a means to harvest energy from the environment. Philamore* et al.* push toward these goals by devising a soft robotic mouth for use in aquatic environments that gathers organic biomass, which is processed in a microbial fuel cell to generate useful energy. Origami-like folding of a membrane pulls particulate-laden water into the mouth; the mouth is then closed for operation of the microbial fuel cell, which can be isolated from the water and connected in series. When combined with state-of-the-art electronics, the energy output from the fuel cell was boosted to usable values for powering motors and artificial muscles within the robot. —MSL


**NEUROSCIENCE**

**Side effects for placebo poppers**

Patients in clinical trials may see their conditions improve, sometimes dramatically, even when they are in the control arm of the study. Tétreault et al. used brain imaging to analyze the connectivity during placebo and pain relief treatment for arthritis-induced knee pain. Brain activity associated with the placebo effect was recorded in the right midfrontal gyrus circuitry of about half of the participants. In contrast, duloxetine-induced analgesia stimulated activity deep in the right parahippocampal gyrus. In some patients, duloxetine interfered adversely with the placebo effect. The responses of individuals can now be differentiated, and their exposure to ineffective therapies can be monitored. —CA

*PLOS Biol.* **10.1371/journal.pbio.1002570** (2016).
Side effects for placebo poppers
Caroline Ash

Science 354 (6316), 1115-1116.
DOI: 10.1126/science.354.6316.1115-g