KOREA PROMISES
INSPIRATION FOR SUCCESS

A country with a stunning natural environment and convenient urban infrastructure. Where time-honored tradition and cutting-edge digital technology coexist. Everything is at your service based on our extensive experience.

Success starts in Korea

KOREA, BEYOND MEETINGS
WWW.KOREACONVENTION.ORG
Science Robotics is a unique journal created to help advance the research and development of robotics for all environments. Science Robotics will provide a much-needed central forum to share the latest technological discoveries and to discuss the field’s critical issues.
Recognize the work of an early career scientist who has performed outstanding work in the field of cancer research. Award nominees must have received their Ph.D. or M.D. within the last 10 years. The winner will deliver a public lecture on his or her research, receive a cash award of $25,000, and publish a Focus article in Science Translational Medicine.

For more information visit www.aaas.org/aboutaaas/awards/wachtel or e-mail wachtelprize@aaas.org. Deadline for submission: March 1, 2017.
Publish your research in **Science Immunology**

NOW ACCEPTING PAPERS

Science Immunology, the newest member in the *Science* family of journals, provides original, peer-reviewed research articles that report critical advances in all areas of immunological research, including studies that provide insight into the human immune response in health and disease. Share your research with *Science Immunology*’s global readership and submit your manuscript today!

What will your discovery be?
Submit your manuscript today at ScienceImmunology.org
Genome editing gets a makeover with CRISPR 2.0

Applications of the genome editing system CRISPR are appearing at a furious pace, and gathering momentum toward therapeutic use in human cells. Indeed, Chinese scientists recently began a human clinical trial using CRISPR-edited cells to fight lung cancer, and U.S. clinical trials are slated to begin in 2017. But leading up to this exciting milestone, researchers performed some editing on the CRISPR system itself. Here’s a look at some recent CRISPR upgrades that are helping to move it closer toward use in clinics.

By Caitlin Smith

Genome editing using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 made an impressive splash onto the scientific scene only a few years ago, empowering researchers to edit a specific gene with greater precision and ease than ever before. Yet a few warts emerged in the new technology, such as cutting DNA at the wrong site, and even unintentional DNA editing.

But scientists quickly began tweaking CRISPR in the right places, and now innovative molecular features are making it work even better and for more cell types. The rapid emergence of CRISPR applications means that clinical trials related to HIV, cancer, sickle cell disease, and other diseases are on the horizon.

Today CRISPR is a cutting-edge tool for many more researchers, and more suitable for future therapeutic use than other gene-modulating methods. “Back when RNA interference [RNAi] hit, it went into hyperdrive,” says Mark Behlke, senior vice president and chief scientific officer at Integrated DNA Technologies (IDT), which supplies RNAi and CRISPR reagents. “But now CRISPR makes that look like a child’s game—it’s just mind-blowing.”

CRISPR reagents get a makeover

Faster, cheaper, and easier to use than gene editing methods such as TALENs (transcription activator-like effector nucleases) or zinc-finger nucleases, CRISPR was quickly seized upon by researchers in many fields. For example, cancer researchers transformed cell lines with plasmids containing DNA that encoded CRISPR guide RNA (gRNA) and Cas9 (CRISPR-associated protein 9) to create different cancer cell lines for study.

But Matt Porteus, a physician and associate professor of pediatrics at Stanford University School of Medicine, had a different initial experience with CRISPR. “Everyone was saying that CRISPR would solve all the problems of the world, but when we tried to use CRISPR DNA plasmids in cells that we thought were important for therapeutic applications, like hematopoietic cell lines or other primary human cell types, the system didn’t work at all,” he says. So the Porteus lab developed a different delivery method for CRISPR/Cas9 editing in human primary cells, one that doesn’t require DNA plasmids (1) (see “Aiming CRISPR at human diseases” on page 209).

Variations of this method exist that introduce CRISPR/Cas9 reagents into cells in the form of ribonucleoproteins (RNPs). “The researcher combines these reagents [gRNA and Cas9 protein] and allows them to form a complex for five to ten minutes” to create RNPs, says Jon Chesnut, senior director of synthetic biology R&D at Thermo Fisher Scientific. “The CRISPR RNPs can then be delivered to the cell by lipid nanoparticles or electroporation.” cont.>

Upcoming features: Digital lab management – February 3 ■ Bioengineering – March 24 ■ Cell culture – April 14

PHOTO © IBREAKSTOCK/SHUTTERSTOCK.COM

The Cas9 protein uses a guide RNA (gRNA) sequence to cut DNA at a complementary site. RNA is in red, DNA is in yellow.
“For C. elegans, CRISPR has been a real game changer.”

— Brian Kraemer

Even though RNP reagents are widely available, it’s only in the past year that researchers have been showing more interest in them as a CRISPR method. “But there’s still an awareness level that’s not there yet, because so many DNA tools remain broadly available from the earlier plasmid-based approaches,” says Louise Baskin, senior product manager at Dharmacon (part of GE Healthcare). The benefits of DNA-free, RNP-based CRISPR over plasmid delivery include no danger of unintended DNA insertion, reduced toxicity, better on-target efficiency, and improved specificity.

These advantages make DNA-free CRISPR tools more amenable for developing therapeutic applications. “For us, the ability to edit genes in primary tissues and primary cell types is a big breakthrough,” says Judd Hultquist, a postdoc in the lab of Nevan Krogan, professor of cellular and molecular pharmacology at the University of California, San Francisco (UCSF).

Hultquist, in collaboration with Kathrin Schumann, a postdoc in the lab of Alexander Marson, assistant professor of microbiology and immunology in the UCSF School of Medicine, used Dharmacon’s Edit-R synthetic gRNAs in RNPs to edit human primary T cells, which are the main target of HIV. Now they are developing an RNP-based discovery platform focused on finding genetic changes that improve the resistance of T cells to HIV infection.

Latest CRISPR technologies also catch the worm

The use of CRISPR RNPs has also revolutionized nonhuman model systems such as that of the worm Caenorhabditis elegans. “For C. elegans, CRISPR has been a real game changer,” says Brian Kraemer, research associate professor in medicine at the University of Washington, who uses IDT’s DNA-free CRISPR reagents.

Injecting RNPs into the gonadal region of the worm allows for genome editing of germ cells—the resulting progeny include some animals with the edited phenotypes, which he can isolate for further study. Kraemer’s lab uses C. elegans as a discovery tool to identify genes required for pathogenic mechanisms in protein-aggregation diseases such as Alzheimer’s and atrophrophic lateral sclerosis (ALS).

Kraemer believes that the new CRISPR tools will fuel the next generation of transgenic models in C. elegans, including customized alleles—genes that encode a protein altered to suit an experimental purpose, such as changing a targeting sequence on an intracellular trafficking protein that could reroute it to a different membrane compartment.

Better reagents, better editing

One of the keys to improving CRISPR in primary cells, as well as other cell types, is the recent enhancement of reagents. IDT developed chemically modified gRNAs that are resistant to nuclease degradation inside cells. The company also manufactures gRNAs in the form of two shorter RNAs (as in the original bacterial system) that form a complex, instead of a single, longer gRNA. MilliporeSigma also plans to offer two-part synthetic gRNAs as “SygRNAs.”

Joey Riepsaame, head of the genome engineering facility in the Sir William Dunn School of Pathology at the University of Oxford, uses IDT’s Alt-R CRISPR/Cas9 RNP system to help run gene editing experiments. Riepsaame appreciates IDT’s two-part gRNAs, which also minimize the triggering of unnecessary immune responses. “For me, this was a very important factor, because my project involves using CRISPR/Cas9 to correct disease-causing mutations in immune cells,” he says. “So far, we haven’t encountered any major challenges with CRISPR/Cas9, and have been able to target every region of interest.”

Optimized CRISPR reagents such as RNPs are also creating new opportunities for researchers. One problem with using DNA-based CRISPR, or even Cas9 messenger RNA (mRNA), is a lag phase before editing begins, during which the cellular machinery transcribes and/or translates the active CRISPR reagents. Injecting DNA- or mRNA-based CRISPR reagents into embryos, for example, can result in so-called “mosaic” animals, which have more than one set of genetic information. “The RNP approach has reduced mosaicism because reagents are active the minute you introduce them; they quickly degrade after editing, and the rapid degradation has the added benefit of reducing off-target effects,” says IDT’s Behlke.

Other new tools include transfection chemistries for better delivery of CRISPR reagents into cells. MITO-GlobalStem’s new Edit-Pro Stem Transfection Reagent supports the delivery of CRISPR tools into stem cells, and its EditPro Transfection Reagent enables delivery into human primary cells and cell lines. “The new EditPro chemistry has a wide range of tunable dosage, in terms of the amount of mRNA that will translate into higher protein translation,” says James Kehler, director of scientific alliances at MITO-GlobalStem (now part of Thermo Fisher Scientific).

Researchers are also moving beyond optimizing CRISPR reagents to using the CRISPR/Cas9 system in new and creative ways. For example, removing the “scissors” portion of Cas9 turns it into an efficient molecular targeting tool that can bring an attached effector molecule to a specific location in the genome. Different effector possibilities, such as activators, repressors, or modifiers, are also being investigated. MilliporeSigma’s dCas9-p300 activator construct is a noncutting version of Cas9 fused to a p300 histone acetyltransferase domain. Upon binding, the construct acetylates nearby histones, opening up the chromatin to allow for increased and sustained gene expression.
CRISPR for functional screening

Despite the recent success with RNP-based CRISPR, there’s still a place for plasmid-based technology when it comes to functional screening. Several companies offer lentiviral CRISPR-based libraries for knocking out genes to identify those genes that are responsible for diseases. Simone Treiger Sredni, associate professor in pediatric neurosurgery at Northwestern University’s Feinberg School of Medicine, recently used Thermo Fisher Scientific’s LentiArray CRISPR Libraries to screen 160 different kinases for mutations that affect cell proliferation. Sredni’s research focuses on finding therapeutic options for children with atypical teratoid/rhabdoid tumors (AT/RTs), aggressive and lethal types of pediatric brain tumors.

Sredni’s screen identified mutations in a few specific kinases that resulted in a reduction of cell proliferation in AT/RT cell lines. “An inhibitor to one of these kinases had the same effect as the absence of the gene, not allowing the tumor to grow,” she said. Although she’d previously looked at high-throughput gene expression platforms for screening, “this gene never popped up, because its level of expression is always very low.” Next, Sredni will investigate the effect of the inhibitor in mice xenografts.

MilliporeSigma also offers lentiviral-based CRISPR tools for whole-genome screening. In collaboration with the Wellcome Trust Sanger Institute, MilliporeSigma also recently constructed arrayed whole-genome CRISPR libraries for human and mouse genomes that offer flexibility in format, delivery, and scope (i.e., single genes, gene families, or whole genomes).

Agilent Technologies recently released pooled CRISPR guide libraries for screening, including the genome-scale CRISPR knockout (GeCKO) SureGuide Catalog human and mouse libraries delivered via lentiviral vector. Agilent also offers preamplified and nonamplified custom libraries for full flexibility. “Our CRISPR pooled libraries are most often used in functional screening, using CRISPR/Cas9 to generate knockouts across the genome,” says Caroline Tsou, Agilent’s global marketing director for molecular and synthetic biology in the Diagnostics and Genomics Group. “Usually these knockouts serve to identify genes involved in cellular responses, such as in signaling pathways, or to discover the function of novel genes.” Agilent also prints custom oligonucleotides of up to 230 base pairs, giving researchers “the freedom to explore other uses for the libraries,” she says.

But sometimes cells don’t thrive when forced to express a bacterial nuclelease. Dharmacon’s Edit-R inducible lentiviral Cas9 system is “a nice compromise for researchers who are uncomfortable with having the nuclelease constantly present in stable cell lines,” says Baskin. “The inducible system gives them the best of both worlds, because they can turn on nuclelease expression when they are ready to treat cells with their guide RNA, get good Cas9 expression, and then turn it off after cleavage.”

Aiming CRISPR at human diseases

Meanwhile, all manner of CRISPR reagents are on deck to fight a variety of diseases—especially using the DNA-free approach. The fast-on, fast-off nature of the RNP method, for example, is well suited to therapeutic applications where the CRISPR reagents cut where directed and then degrade quickly.

But correcting genetic defects isn’t as simple as knocking out a gene, because often the correct functional gene must also be introduced at the right location. The Porteus lab at Stanford recently published proof-of-concept work using CRISPR RNPs to target the beta-globin gene, mutations of which cause sickle cell disease. They showed that they could correct the defective beta-globin gene in human hematopoietic stem cells from patients with this disease (4). Independently, a lab at the University of California, Berkeley, accomplished a similar CRISPR editing result with the beta-globin gene, using a slightly different method to deliver the corrected gene (5).

Taken together, the work of these and other labs is promising for upcoming human trials. In June, the U.S. National Institutes of Health approved the first trial in the United States, slated for 2017, which will use CRISPR-edited human T cells to help augment cancer therapies.

Meanwhile, the Porteus lab is gearing up to manufacture CRISPR-edited cells for use in patients, in clinical trials that they hope to start in 2018. They will likely target sickle cell disease first, followed by severe combined immune deficiency (SCID). Porteus hopes to use CRISPR not just to correct mutations, but also to “give cells new properties that might treat a disease, such as an immune system that’s resistant to HIV, or to create cells that could deliver a protein to the brain,” he says. “In the ecology of science and medicine, we feel like our role is to try to bring this technology to patients.”

With the development of CRISPR research tools in hyperdrive and U.S. clinical trials set to begin next year, these goals are probably closer to being realized than we imagine.

References

Caitlin Smith is a freelance science writer based in Portland, Oregon.
DOI: 10.1126/science.opms.p1700111
CRISPR RNA Arrayed Library

The Dharmacoon Edit-R Human Druggable Genome crRNA Library enables screening of nearly 8,000 individual targets with CRISPR/Cas9 gene knockouts. The first arrayed synthetic CRISPR RNA (crRNA) library of its kind, it provides insight into numerous biological questions and offers a powerful screening resource to identify potential therapeutic targets. The Edit-R crRNA Library delivers one-gene-per-well information by enabling high content and multiparametric assays to characterize complex phenotypes. Ready-to-use, transfecatable Edit-R synthetic crRNAs are designed using an algorithm that results in highly functional gene knockout, while also accurately identifying and eliminating sequences with the potential for off-target editing. The library offers 7,995 gene targets with four crRNAs per gene; 96- and 384-well-plate formats with quantities of 0.1 nanomole (nmol), 0.25 nmol, or 0.5 nmol per well; and subsets arranged by gene family including kinases, proteases, phosphatases, ion channels, transcription factors, G-protein-coupled receptors, ubiquitin enzymes, and other potential drug targets.

GE Healthcare Life Sciences
For info: 800-526-3593
www.gelifesciences.com

Genomic Data Analysis Software

Illumina’s NGS-based CytoSeq assay extends beyond traditional microarray-based cytogenetics assays for detection of copy number variation (CNV) and absence of heterozygosity (AOH), but also adds the ability to identify single nucleotide variation, all in a single assay. Coupled with BioDiscovery’s NxClinical software for analysis and interpretation of genomic events, this new solution will offer customers a powerful and cost-effective research tool for studying CNVs, AOH, and mutations in genetic disorders. NxClinical software will be offered with the CytoSeq assay, providing an easy-to-use, interactive instrument for visualization and interpretation of genomic events, directly reading CytoSeq results to process sample data and provide results.

BioDiscovery
For info: 310-414-8100
www.biodiscovery.com

Gene-Edited Cell Lines

Horizon’s TurboGFP tagged HAP1 cell lines enable researchers to track protein production and localization at the endogenous level in real time, live-cell assays. The cells combine three leading technologies: CRISPR/Cas9 gene editing; the HAP1 (Huntingtin-associated protein 1) cell line; and TurboGFP, an early-maturation green fluorescent protein (GFP) from Evrogen. Although gene editing technologies are now readily available, the processes are still not straightforward, and can be costly in terms of time and resources. All of the award-winning products in Horizon’s portfolio have been designed to provide researchers with access to the latest technologies, effectively democratizing gene editing. These cell lines are also suitable for applications such as Western blotting, protein pulldown, affinity chromatography, immunocytochemistry, and flow cytometry. They can also be an ideal solution when working with a protein for which there is no optimal antibody.

Horizon
For info: 844-655-7800
www.horizondiscovery.com

CRISPR gRNA Lentivector Cloning Kits

CRISPR gRNA Lentivector Cloning Kits from AMS Biotechnology provide targeted and precise gene editing methodology. The recently discovered CRISPR/Cas gene editing technique offers higher targeting accuracy, more target-sequence selection, less complexity, and less off-target cell toxicity than previous genome editing technologies. To enable CRISPR genomic editing, the kit provides premade Cas9-expression lentivirus, as well as guide RNA (gRNA) lentivector cloning kits from which researchers can construct their target gRNA lentivectors. Applying both Cas9 lentivirus and gRNA lentivirus allows target knockout or modification (knockin) when a donor DNA is also applied. The kits enable rapid, precise directional cloning of DNA duplex-encoded gRNA structure at efficiencies of greater than 95%. The lentivector included in each kit encodes an antibiotic marker or a dual marker (a fluorescent-antibiotic fusion marker), enabling generation of stable cell lines for long-term gRNA expression. Two promoters are available: U6 and an optional inducible H1 promoter.

AMS Biotechnology
For info: 617-945-5033
www.amsbio.com/lentivirus.aspx

CRISPR Guide Libraries

Agilent Technologies offers pooled CRISPR guide libraries for any functional genomics application, from genome-scale CRISPR knockouts (GeCKO) to fully customized, user-designed libraries. Genome engineering tools based on CRISPR have rapidly accelerated research related to functional studies of complex diseases and drug discovery. Genetic screens using pooled libraries are typically performed to locate and identify genes involved in cellular response, such as in signaling pathways, or to discover the function of novel genes. SureGuide CRISPR libraries are available in three formats: (1) ready-to-package plasmid libraries that consist of GeCKO libraries and target all exons in the human or mouse genome; (2) ready-to-clone custom libraries that enable user-defined custom CRISPR targets in mammalian cells; and (3) ready-to-amplify custom libraries that enable researchers to design every aspect of their CRISPR library, allowing the use of alternative delivery systems, cloning approaches, and the development of CRISPR libraries targeting any set of genomic regions in any organism.

Agilent Technologies
For info: 877-424-4536
www.agilent.com
want new technologies?

antibodies
apoptosis
biomarkers
cancer
cytometry
data
diseases
DNA
epigenetics
genomics
immunotherapies
medicine
microbiomics
microfluidics
microscopy
neuroscience
proteomics
sequencing
 toxicology
transcriptomics

watch our webinars

Learn about the latest breakthroughs, new technologies, and ground-breaking research in a variety of fields. Our expert speakers explain their quality research to you and answer questions submitted by live viewers.

VIEW NOW! webinar.scinemag.org

Science
AAAS

Brought to you by the Science/AAAS Custom Publishing Office

@SciMagWebinars
POWER OF INFORMATION FELLOWSHIPS

UP TO $110,000 PER YEAR – APPLY TODAY!

ABOUT THE FELLOWSHIP

“How little we know, how eager to learn.”

As part of an ongoing multidisciplinary research effort, up to three Templeton Independent Research Fellowships will be awarded in 2017 to outstanding candidates to explore the concept of information applied to the natural sciences.

Funded by Templeton World Charity Foundation, Inc. (TWCF), the fellowships will support ongoing research by exceptional early-career scholars. The fellowships will be awarded for up to 3 years, and applicants can request up to $110,000 per year. Applications close March 31, 2017.

For more information, please visit:
www.templetonworldcharity.org/fellowship

WHAT WE’RE LOOKING FOR

Because of its wide-ranging applicability, the concept of information offers a promising pathway for comprehending an array of natural phenomena via a single concept. Our fellowships aim to explore, scientifically and philosophically, the concept of information and its utility for understanding various physical and biological processes. TWCF will therefore not fund projects in bioinformatics, information technology, data analysis, information handling, statistical inference, big data, or any other area in which information is used primarily as an operational rather than fundamental concept.

TWCF has previously supported numerous research projects in which information is an essential part of the conceptual framework underlying the science. For examples of the kinds of projects that TWCF has supported in the past, please visit www.templetonworldcharity.org.

2016 NOMINEES

LARISSA ALBANTAKIS
University of Wisconsin–Madison
Neuroscience

LEE ROZEMA
University of Vienna
Physics

CHIARA MARLETTO
University of Oxford
Physics
What’s in Your Sample?

Choose the right immunoassay to get your answers!

Learn more | rndsystems.com/immunoassays