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Data-driven predictions in
the science of science
Aaron Clauset,1,2* Daniel B. Larremore,2 Roberta Sinatra3,4

The desire to predict discoveries—to have some idea, in advance, of what will be
discovered, by whom, when, and where—pervades nearly all aspects of modern science,
from individual scientists to publishers, from funding agencies to hiring committees. In this
Essay, we survey the emerging and interdisciplinary field of the “science of science”
and what it teaches us about the predictability of scientific discovery. We then discuss
future opportunities for improving predictions derived from the science of science and its
potential impact, positive and negative, on the scientific community.

T
oday, the desire to predict discoveries—to
have some idea, in advance, of what will be
discovered, by whom, when, and where—
pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
The more predictable we can make the process
of scientific discovery, the more efficiently those
resources can be used to support worthwhile
technological, biomedical, and scientific advances.
Despite this pervasive need, our understand-

ing of how discoveries emerge is limited, and
relatively few predictions by individuals, publish-
ers, funders, or hiring committees are made in a
scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
scientists make progress on individual scientific
challenges, see (1).]

Interest in predicting discoveries stretches
back nearly 150 years, to work by the philosopher
Boleslaw Prus (1847–1912) and the empirical soci-
ologist Florian Znaniecki (1882–1958). Znaniecki,
in particular, called for the establishment of a data-
driven study of the social processes of science. For
most of the 20th century, progress toward this
goal came slowly, in part because good data were
difficult to obtain and most people were satisfied
with the judgment of experts.
Today, the scientific community is a vast and

varied ecosystem, with hundreds of loosely inter-
acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
This daunting size and complexity has broadened
the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
questions (2, 3). It is now widely believed that
exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
These efforts raise a provocative question:Will

we eventually be able to predict important dis-
coveries or their discoverers, such as Yoshinori
Ohsumi’s Nobel Prize–winning work on the au-
tophagy systeminanimal cells?Wedonot yet know
the answer, but work toward one will substantially
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Fig. 1. How unexpected is a discovery? Scientific discoveries vary in how unexpected they were relative to existing knowledge. To illustrate this perspective,
17 examples of major scientific discoveries are arranged from the unanticipated (like antibiotics, programmable gene editing, and cosmic microwave background
radiation) to expected discoveries (like the observation of gravitational waves, the structure of DNA, or the decoding of the human genome).
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advance our understanding of science as a social
process. For instance, some scientific discoveries
are easily predictable (Fig. 1). As theory and
evidence accumulate, it becomes clear that a
discovery is imminent, like a singlemissing piece
in the middle of a jigsaw puzzle. The determina-
tion of the human genome sequence and the
observation of gravitational waves are examples
of such discoveries. On the other hand, some dis-
coveries seem impossible to predict because they
represent puzzle pieces that change howwe think
the puzzle is organized or that find new uses in
underdeveloped parts of the puzzle. Although the
implications of such a novel piece are sometimes
immediately obvious, as with programmable gene
editing, sometimes the implications require time
for additional pieces to fall into place, as was the
case with penicillin, the first antibiotic, which took
15 years to realize.
Using modern data on published works and

scientific careers, researchers in the science of
science have begun identifying quantitative pat-
terns that hold true across different research
fields, and these insights are redefining the limits
of predictability. Four areas exemplify these
achievements: citations of past discoveries, who
gets hired into career researcher positions, and
both the scientific productivity and the timing
of major discoveries over a career. However,
work in these areas also hints at limits to data-
driven predictions about the production of
discoveries.
Modern bibliographic databases allow re-

searchers to easily tabulate and study citation
counts, which provide a convenient, although
controversial, measure of scientific impact. More
than 50 years ago, in widely celebrated work,
de Solla Price (1922–1983) identified the basicmech-
anism driving citation counts, in which current vis-
ibility and lucky events drive a positive feedback
loop that amplifies future visibility (4). This “pref-
erential attachment” mechanism explains why
citations are distributed so unevenly across papers
andwhy some receive hundreds or even thousands
of times more attention than the typical paper.
This model also makes remarkably good pre-
dictions for how citations accumulate within a
developing field (5). A modified version, with
controls for a paper’s recency and its intrinsic
appeal, provides predictions about the long-
term evolution of citation counts for individual
papers, showing when citations will peak and
how long it takes a discovery to become common
knowledge (6).
However, some discoveries do not follow these

rules, and the exceptions demonstrate that there
can be more to scientific impact than visibility,
luck, and positive feedback. For instance, some
papers far exceed the predictions made by sim-
ple preferential attachment (5, 6). And then there
are the “sleeping beauties” in science: discoveries
that lay dormant and largely unnoticed for long
periods of time before suddenly attracting great
attention (7–9). A systematic analysis of nearly
25 million publications in the natural and social
sciences over the past 100 years found that
sleeping beauties occur in all fields of study (9).
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Fig. 3. Major discoveries occur at any point in the sequence of a scientist’s publications. A raster plot
showing the order of all publications, arranged from first publication to last, of 150 randomly chosen
physicists (17), where each row of circles represents the sequence of publications by a particular scientist.
Within a row, a blue circle marks the highest-impact publication. The uniform distribution of blue circles
across the square, and the flatness of the corresponding histogram for 10,000 investigators (top), indicate
that there is no pattern across the sequence as to when a major discovery occurs.
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Fig. 2. Productivity peaks early for most researchers. (Left) A heatmap showing the timing of the
most productive year (measured in number of published papers) in a faculty career for more than
2300 computer science faculty, arranged from left to right by years since first faculty position (13).
(Right) The histogram sums the heatmap’s rows, showing that, for most researchers, their most
productive year occurred within 8 years of starting their laboratory.
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Examples include a now famous 1935 paper by
Einstein, Podolsky, and Rosen on quantum me-
chanics; a 1936paper byWenzel onwaterproofing
materials; and a 1958 paper by Rosenblatt on
artificial neural networks. The awakening of
slumbering papers may be fundamentally un-
predictable in part because science itself must
advance before the implications of the discovery
can unfold.
What discoveries are made is partly deter-

mined by who is working to make them and
how they were trained as scientists (10). These
characteristics of the scientific workforce are
driven by the doctoral programs of a small group
of prestigious institutions, which are shown by
data to train the majority of career researchers
(11). As a result of this dominance, the research
agendas and doctoral student demographics of
a small number of programs tend to drive the
scientific preferences and work-force composi-
tion of the entire ecosystem. Aside from the ro-
bust pattern that 85% of new faculty move from
their doctoral program down the hierarchy of pres-
tige among research institutions, faculty place-
ment remains remarkably unpredictable, so far.
Models that exploit the available data on early
career productivity, postdoctoral training, geog-
raphy, gender, and more make barely better pre-
dictions about ultimate placement than simply
knowing a person’s academic pedigree (12). Ac-
curate predictions in this setting may require
different, less-accessible data, or it may be that
placement outcomes are fundamentally unpre-
dictable because they depend on latent factors
that are unmeasurable.
Researchers have also investigated the predict-

ability of individual scientists’ performance and
achievements over the course of a career, as mea-

sured by their productivity and by citations to
their published works. Conventional wisdom
suggests that productivity—crudely, the num-
ber of papers published—tends to peak early in
a scientist’s career and is followed by a long and
gradual decline (13), perhaps as a result of in-
creased teaching or service duties, lower creativity,
etc. However, a recent analysis of over 40 years
of productivity data for more than 2300 com-
puter science faculty reveals an enormous varia-
bility in individual productivity profiles (14).
Typically, the most productive time for research
tends to be within the first 8 years of becoming
a principal investigator (Fig. 2), and the most
common year in which productivity peaks is just
before a researcher’s first promotion. At the same
time, for nearly half of all researchers, their most
productive year occurs later, and, for some, the
most productive year is their last.
Past work also suggests that the early-to-middle

years of a career are more likely to produce a sci-
entist’s “personal best”discovery, i.e., theirmost well-
cited result (15, 16). This pattern implies that the
timing of major discoveries is somewhat pre-
dictable. However, an analysis of publication his-
tories for more than 10,000 scientists shows that,
in fact, there is no correlation between the impact
of a discovery and its timing within a scientist’s
career (17). That is, when a scientist’s papers are
arranged in order from first to last, the likelihood
that their most highly cited discovery will be their
first paper is roughly the same as it being their
second, tenth, or even last paper (Fig. 3). The ob-
servation that young scientists tend to be the orig-
inators of most major discoveries is thus a natural
consequence of their typically higher productivity,
not necessarily a feature of enhanced ability early
in a career. By simple chance alone, the personal

best is more likely to occur in the more produc-
tive phases of a scientist’s career.
Although the relative timing of each scientist’s

own highest-impact paper may be impossible to
predict, predicting howmany citations that paper
will attract is a different matter (17, 18). Specif-
ically, citations to published papers vary across
scientists in a systematic and persistent way that
correlates with the visibility of a scientist’s body
of work but that is independent of the field of
study. This pattern allows us to predict the num-
ber of citations of a scientist’s personal best work.
The two results about the timing and magnitude
of a scientist’s personal best show that some as-
pects of the achievements of individual scientists
are remarkably unpredictable, whereas other as-
pects are more predictable.
Robust and field-independent patterns in pro-

ductivity and impact, alongwith evidence of biases
in the evaluation of research proposals, raise trou-
bling questions about our current approach to
funding most scientific research. For instance, ob-
servational and experimental studies demonstrate
that grant proposals led by female or nonwhite
investigators (19, 20) or focused on interdiscipli-
nary research (21) are less likely to receive funding.
Similarly, the concentration of themost productive
and impactful years within the first decade of a sci-
entific career seems to justify efforts to shift funding
from older to younger scientists. The NIH’s long-
running effort to support early-stage investigators
is a notable example, although it has had limited
success, as the number ofNIHawards to scientists
under 40 remains lower than its peak 30 years
ago (22). On the other hand, onemight argue that
young researchers tend to be more productive in
spite of imbalances in external funding. In these
cases, the science of science has identified an
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important pattern, but determining the under-
lying cause will require further investigation and
active experimentation.
Citations, publication counts, careermovements,

scholarly prizes, and other generic measures are
crude quantities at best, and we may now be
approaching the limit of what they can teach
us about the scientific ecosystem and its pro-

duction of discoveries. These measures are lagging
indicators of the movements of the scientific
frontier, and their ability to predict the emer-
gence of a new field or the possibility of a major
discoverymay be low. A fundamental question in
the science of science is whether better andmore
accurate predictions are possible withmore timely
or context-specific sources of data on the work of
scientists—for example, the content of papers, data
from preprint repositories, scientific workshops,
research teamcommunication, rejectedmanuscripts
or grant proposals and their peer reviews, or
even social media. Controlled experiments should
be used to uncover the causal mechanisms that
drive the patterns observed in large digital data-
bases and to probe the relationship betweenmea-
surable quantities and our interpretation of them,
e.g., how well citation counts reflect perceived
scientific impact (23).
Citations and publications, in particular, are

measures of past success that exhibit a feedback
loop that creates a rich-gets-richer dynamic.When
combined with the hypercompetitive nature of
modern scientific publishing, funding, and hiring,
this feedback loop can create dramatic inequal-
ities in apparent success because opportunities
for future success are allocated, in part, based on
markers of recent success. However, the profound
unpredictability that pervades many aspects of
scientific discovery indicates that relying too
heavily on such measures can create self-fulfilling
predictions (24), which ultimately narrow the
scope of scientific innovation and divert atten-
tion away from potentially fundamental but un-
predictable advances. An important direction of
future work must be developing measures of suc-
cess and systems of evaluation that are less prone
to feedback loops.
A dangerous possibility is that funders, publish-

ers, and universities will exploit large bibliographic
databases to create new systems that automatically
evaluate the future “impact” of project proposals,

manuscripts, or young scholars. Such data-mining
efforts should be undertaken with extreme cau-
tion. Their use could easily discourage innova-
tion and exacerbate existing inequalities in the
scientific system by focusing on trivial correla-
tions associated with crude indicators of past
success. After all, novel discoveries are valuable
precisely because they have never been seen be-
fore, whereas data-mining techniques can only
learn about what has been done in the past.
The inevitable emergence of automated systems
makes it imperative that the scientific commu-
nity guide their development and use in order
to incorporate the principles of fairness, account-
ability, and transparency in machine learning
(25, 26). We have a responsibility to ensure that
the use of prediction tools does not inhibit fu-
ture discovery, marginalize underrepresented
groups, exclude novel ideas, or discourage inter-
disciplinary work and the development of new
fields.
Ultimately, the scientific ecosystemwill adapt to

changing scientific incentives and requirements,
just as biological ecosystems adapt to selective
pressures (27). As these pressures shift, scientists
will adapt or retire, passing on to their students
their best practices for survival and proliferation.
A troubling trend, however, is the nearly annual
declaration by a Nobel laureate that their biggest
discovery would not have been possible in today’s
research environment. The 2016 declaration came
from Ohsumi, who decried the fact that “scientists
are now increasingly required to provide evidence
of immediate and tangible application of their
work” (28). This widespread emphasis on predict-
able discoveries over unexpected ones breeds a
different, more risk-averse scientist. The result
may be a dangerous form of purifying selection,
in which young scientists optimize their research
efforts to a climate that is maladaptive for the very
same scientists we annually recognize for extra-
ordinary scientific contributions.
There is great potential in adapting ideas from

ecology and evolutionary theory to better under-
stand and predict the scientific ecosystem as a
whole. Progress in this directionwill help us avoid
the loss of innovation that comes from a loss of
diversity. As a community, we must develop pol-
icies that cultivate a diverse scientific ecosystem,
including Freeman Dyson’s visionary birds and
focused frogs (29), as well as contrarians, wan-
derers, tool builders, and more. The practical
details of achieving this kind of diversifying selec-
tion among scientists, however, remain unclear.
True ecological research relies on a combination
of observational study and active experimenta-
tion. Yet, most work in the science of science is
purely observational, and adding active experi-
mentation (30) will require care, boldness, and
bravery from the funding agencies, publishers,
and administrators that define the adaptive land-
scape. If the science of science has taught us any-
thing, it is that science itself can be probed using
the scientific method, and we would be foolish to
neglect experimentation.
Driven by new data sources, new experiments,

and new ideas, we expect the science of science

to produce many more exciting insights about
the social processes that lead to scientific discov-
ery. Already, research indicates that some as-
pects of discoveries are remarkably predictable
and that these are largely related to how cita-
tions of past discoveries accumulate over time.
Other aspects, however, may be fundamentally
unpredictable. These limitations are a humbling
insight in this modern era of big data and arti-
ficial intelligence and suggest that amore reliable
engine for generating scientific discoveries may
be to cultivate and maintain a healthy ecosystem
of scientists rather than focus on predicting in-
dividual discoveries.
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“…We have a responsibility
to ensure that the use
of prediction tools
does not inhibit future
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