Be Among the First to Publish in *Science Robotics*

NOW ACCEPTING MANUSCRIPTS

ScienceRobotics.org

Science Robotics is a unique journal created to help advance the research and development of robotics for all environments. *Science Robotics* will provide a much-needed central forum to share the latest technological discoveries and to discuss the field’s critical issues.
FACULTY POSITIONS

SENIOR INVESTIGATOR POSITION IN MOOD DISORDERS RESEARCH

The Department of Psychiatry and Biobehavioral Sciences at UCLA, in conjunction with the Semel Institute for Neuroscience and Human Behavior, seeks applications for a tenure-equivalent senior investigator (Associate or Full Professor) in Mood Disorders Research. The ideal candidate will have an internationally recognized research program in depression and/or bipolar disorder, with a successful record of extramural funding, an interest in a highly collaborative research environment, and the skills and experience to play a leadership role in translating research findings into clinical practice, including participation in the UCLA Depression Grand Challenge. Areas of research may include treatment, phenotyping, or basic-translational studies.

The successful candidate must be qualified to perform clinical service in mood disorders, be eligible for a California licensure, and be board-certified. Responsibilities will include teaching residents, post-doctoral fellows, medical students and/or graduate students. Apply at website: http://recruit.apo.ucla.edu/apply/JPF02736. The University of California is an Equal Opportunity/Affirmative Action Employer. For the complete UC policy see: UC Nondiscrimination and Affirmative Action Policy.

Get jobs & career advice!

@ScienceCareers

/ScienceCareers

ScienceCareers.org

Features in myIDP include:

- Exercises to help you examine your skills, interests, and values.
- A list of 20 scientific career paths with a prediction of which ones best fit your skills and interests.
- A tool for setting strategic goals for the coming year, with optional reminders to keep you on track.
- Articles and resources to guide you through the process.
- Options to save materials online and print them for further review and discussion.
- A certificate of completion for users that finish myIDP and more.

Start planning today!

myIDP: a career plan customized for you, by you.
New tools for measuring academic performance

Numbers and data drive decisions in sports, business, and other fields. Yet in academia, publication lists are still the primary basis for hiring, promotion, and funding decisions. Some administrators and researchers are adopting new methods for assessing academic achievement, however. Large universities may subscribe to comprehensive, costly vendor-based performance panels. Other institutions and individuals design their own algorithms and dashboards. By Chris Tachibana

One question guides top scientific institutions in making hiring and promotion decisions, and funders in awarding support, says Ushma Neill: “Will the candidate move the needle forward in their field?” Neill, vice president of scientific education and training at Memorial Sloan Kettering Cancer Center (MSKCC), says the bottom line is that organizations want faculty who advance science. Traditionally, she says, methods for evaluating a candidate’s potential have been “largely intuitive.” But that’s changing.

Scientific impact is still mainly measured with publications. Universities don’t set numbers of papers required for hiring or promotion, though, because strict counts don’t reflect author contribution or whether a publication is a review or original findings. In addition, fields vary in how work is presented. Some emphasize peer-reviewed journals or conference proceedings, others books or monographs. Informal discussions suggest annual goals ranging from a few publications for postdocs to five or more for faculty. However, quality matters more than quantity, says Neill. A comprehensive, well-cited study stands out more than several minor articles pulled from a single project.

Academic impact is also measured through advisor and peer recommendations and awards for research, mentoring, and teaching, says Morten Pejrup, associate dean for research in the Faculty of Science at the University of Copenhagen, Denmark. But these “old school methods,” he says, can be supplemented with new tools.

Going beyond traditional measures

When evaluating a job candidate, Pejrup checks Scopus, a subscription database of peer-reviewed journal articles, books, and conference proceedings. “You see citations, journal impact factors, and order of authors,” he says. “But you also see if the person always publishes with the same people or has contributed to different groups.” Publication databases such as Scopus or Web of Science may include bibliometrics such as h-index and m-index, which combine measures of publications and citations to indicate influence.

Trends in measuring academic performance are driven in part by funders, says Trine Buhl Monty, senior executive consultant for the University of Copenhagen’s Faculty of Science. For example, the United Kingdom recently completed the Research Excellence Framework 2014, an initiative to determine the research quality and economic and social impact of its universities. Among its other uses, the evaluation will influence funding. Horizon 2020, the European Union’s biggest funding program for research and innovation, emphasizes impact related to intersectoral partnerships and open science, to ensure influence beyond the lifetime of a project, Buhl Monty says. In response, some faculty now list industry collaborations, open-access publications, and open-source software as “research products.”

Cathy Sarli, a librarian at Washington University School of Medicine in St. Louis, specializes in research impact assessment. She studies the diversification of measures beyond publications, citations, and journal impact factors (calculated as the average number of times articles published over a two-year period are cited in a given journal). Impact factors, she says, were developed in the mid-20th century to compare peer-reviewed journals, not individual researchers. “Organizations are going beyond traditional raw numbers,” she says. “They’re utilizing other metrics and developing their own resources.”

Upcoming features

Postdocs: Tech Transfer—March 17 • Postdocs: Unusual Collaborations—August 25 • Faculty: Managing Multigenerational Teams—September 15
FOCUS ON CAREERS

"[Metrics] enhance recommendation letters, teaching experience, funding success, and institutional service.”
– Ushma Neill, vice president of scientific education and training, Memorial Sloan Kettering Cancer Center

One example is the Relative Citation Ratio (RCR), recently developed by the U.S. National Institutes of Health (NIH) to measure an article’s influence. This year, the NIH released the free iCite tool for calculating this metric. The RCR normalizes citation rates to other papers in the same field. This allows comparisons among scientists with different specialties, which are often necessary when allocating internal resources, endowed chairs and leadership positions, and funding. These decisions can require comparing “apples and oranges, or sometimes apples and zucchini,” says Neill.

In 2015, Neill and two MSKCC colleagues published their method for considering researchers in different areas and stages in their careers, using data from Scopus and other sources. She explains, “We wanted to create a level playing field when comparing, for example, the productivity and impact of a structural biologist and a surgeon.” Neill points to another trendsetter in tracking academic productivity: New York University (NYU) Langone Medical Center.

Developing dashboards and datasets

The story of the NYU Langone dashboard system for tracking academic and clinical performance begins with the appointment of Robert Grossman as dean and CEO in 2007. Grossman wanted standardized reports to guide strategic decisions. NYU Langone’s information technology group built a system that presents data from across the organization. Graphical displays show clinical measures, research performance, educational statistics, and finances. Laura Ahlborn, vice president for research enterprise and strategy, says that for measuring basic research, the dashboard has metrics in four areas: grants, publications, innovations (such as patents), and efficiency (for example, productivity per full-time equivalents). Administrators use the dashboard to track the performance of departments, but it’s also helpful for individual faculty members.

“We use dashboard metrics to drive strategic decision-making, to identify where we have strengths and weaknesses, and to guide where to invest our time and resources,” says Dafna Bar-Sagi, NYU Langone’s senior vice president and vice dean for science, and its chief scientific officer. “The dashboard shows performance over time, so it’s also useful for monitoring the career trajectory of faculty and advising them accordingly.”

Ahlborn and Bar-Sagi emphasize that the dashboard is used in combination with human judgment. “Academic endeavors can’t be judged strictly by numbers,” says Bar-Sagi. “So the dashboard is one of several elements of an ongoing dialog between faculty and leadership.”

Both say that interest in tools for measuring academic impact is high and that they often field requests for information about the dashboard. Not surprisingly, it’s a lot of work. Setting up the dashboard required an initial investment in infrastructure and decisions about what data to collect and how systems would talk to each other. The dashboard is continually updated, including moving to add the RCR as a metric. Developing and maintaining this resource works, Ahlborn says, because NYU Langone has a culture of quantitative, precise, data-driven decision-making.

Tracking trainees

Starting in 2006, the Danish government decided to invest in increasing the intake of Ph.D. students at its universities. Schools have used the data on the increase, much of which is self-reported, to track how their graduates are filling jobs in education, research, government, and other sectors. Because of public concern about using taxpayer funds to educate non-Danes, the universities also want to know where international students go and what jobs they get.

“We must be transparent and show policy-makers and taxpayers what we are producing,” Pejrup says. “The Faculty of Science is responsible for 40 percent of the university’s budget.” Pejrup’s unit has now generated two substantial reports with longitudinal data on Master’s and doctoral graduates: the jobs they took, the countries they worked in, and their salaries. It could inform graduate curricula, training strategies, and policy, for example, by showing if the country is training the appropriate number of Ph.D.s for the national and international job market.

Buhl Monty says that the reports are also useful for guiding Ph.D. students by showing career options outside of academia. For students committed to a faculty position, the data indicate the importance of being able to move to another country for a job. “It shows students what’s possible,” she says. “It adjusts their expectations.”

Pejrup is also implementing a measure of scientific contribution that he would like to see become widespread. “More large consortia are producing publications,” he says, “such as in physics or genomics collaborations. Unless someone is first, last, or corresponding author, it’s hard to know what they contributed.” In fields such as bioinformatics, publications can have long author lists. Knowing who did what is critical for evaluating individual collaborators.

Pejrup would like to see descriptions of scientific contribution become more standard in academic reporting. He started with a requirement that Ph.D. theses that insert publications as chapters include a description of the student’s contribution. “Many journals now require this description,” Pejrup says. “Having it be public information would help people evaluate the authors’ work.” cont.>
Breast Cancer Research
Assistant or Associate Professor

Roswell Park Cancer Institute (RPCI) of Buffalo, NY, is looking for faculty candidates (Assistant or Associate Professor, MD/PhD, MD or PhD) to lead the translational breast cancer research program.

The selected individual will hold a primary appointment in the Department of Medicine, with a joint appointment in the appropriate basic research department. Expertise in molecular and cell biology, electrophysiology and use of advanced animal models is an advantage. To achieve a goal of building a concerted research program, the applicant must have excellent communication skills, publication in high-impact journals and a proven track record of extramural funding. The opportunity to mentor graduate students is possible through a joint appointment with the graduate school.

RPCI, one of the world’s oldest cancer center established in 1898, is known for numerous seminal basic science and translational discoveries in oncology. It is the only NCI-designated comprehensive cancer center in New York State outside of the New York City metropolitan area. Under the umbrella of its Cancer Center Support Grant, RPCI runs multidisciplinary research combining multiple programs aimed at understanding, preventing and curing cancer. It has state-of-the-art research infrastructure enabling all aspects of modern biomedical research – from discovery work towards clinical validation – and provides a highly stimulating academic and clinical environment. Learn more at www.roswellpark.org.

Interested individuals should email a CV and letter describing programmatic and research interests to: Angela Gunther, MBA, PHR, Senior Faculty Recruitment Administrator, angela.gunther@roswellpark.org.

GW Cancer Center
Faculty Positions in Cancer Biology

The George Washington University invites applications from outstanding scientists interested in contributing to the research program of the recently established George Washington Cancer Center (GWCC). The GWCC (cancercenter.gwu.edu) brings together the resources of the George Washington University, the GW Medical Faculty Associates, and the GW University Hospital to expand current research efforts in the fight against cancer and to position our institution as the premier cancer care provider in the Washington, D.C. area.

Applications are welcome from scientists with expertise in the broad area of cancer biology. Areas of particular interest include, but are not limited to: cancer epigenetics, cancer immunology and immunotherapy, viral/microbial oncology, and cancer engineering/technology. Examples include: gene regulation, signal transduction, cancer genetics, functional genomics and proteomics, and application of engineering technologies and methods in cancer research. Tenured/tenure-track appointments will be made in one of the School’s departments at a rank (Assistant, Associate, or Full Professor) and salary commensurate with experience, publication record, and potential to maintain an externally-funded research program. Successful candidates will also receive a competitive start-up package and will participate in the teaching mission of their department.

Basic Qualifications: Applicants must hold a Ph.D. and/or M.D. degree (or equivalent) in an appropriate discipline and have an established research program, as evidenced by extramural funding and publications.

Application Process: To be considered, please complete an online faculty application at: https://www.gwu.jobs/postings/39323 and upload a current CV, cover letter, and statement of current and future research interests (three-page limit). Review of applications began on January 11, 2017 and will continue until the positions are filled. Only complete applications will be considered. Employment offers are contingent on the satisfactory outcome of a standard background screening.

The George Washington University and the George Washington University Medical Faculty Associates are an Equal Employment Opportunity/Affirmative Action Employer that does not unlawfully discriminate in any of its programs or activities on the basis of race, color, religion, sex, national origin, age, disability, veteran status, sexual orientation, gender identity or expression, or on any other basis prohibited by applicable law.
Individual scientists are also developing their own performance metrics. At the University of Washington School of Aquatic and Fisheries Sciences, Associate Professor Trevor Branch created a database of the most cited papers in his field. It includes a metric for estimating individual contributions to studies with multiple authors. The calculation is not automated but has been tested in a 2016 proof-of-concept paper. Branch says the database is mostly a hobby, but he finds it strategically useful. “I’m a modeler and a data analyst,” he says. “The database helps me look at the big picture—where can I have the most impact, what fields are of interest to other people, what should I work on, and where should I send my papers?”

Including infographics and social media

Adding metrics to your own research portfolio is simple, says Ahmed Moustafa, associate professor of bioinformatics and genomics at the American University in Cairo. His 2013 tenure dossier included data from Impactstory, a web-based tool for measuring shares and mentions of a research product. The publication list in his online curriculum vitae displays the dissemination of his publications as colorful donut graphs from the digital science company Altmetric. These measures reflect public outreach and engagement, an area that funders and institutions now include in academic performance evaluations.

Moustafa believes the information strengthened his dossier. “It was well received,” he says. “My committee used it when presenting my tenure case to the department and the school. It gave information about the performance of my research in the scientific community and an assessment of the global visibility and significance of my work.”

Setting up Impactstory and Altmetric tools doesn’t take much time and effort, Moustafa says, and updates are automatic. He has also used the information to introduce himself to potential collaborators. In his field of life science, he says it’s not unusual for grant proposals to include Altmetrics or Impactstory profiles among other measures of productivity.

Branch has included social media activity in the engagement plans of his grant applications, but reports a mixed reception from reviewers. Outreach and engagement can be done in many ways, he says. Some people might gravitate to using social media to interact with the community, but others might prefer public events, blogging, or another method. “Learn what style of scientific outreach works for you,” he says. But having an engagement outlet in place is an advantage when the opportunity arises to promote your work.

When Branch’s student, Cole Monnahan, published a 2014 study about blue whales, they knew the general public would be interested, so Branch promoted it on his social media accounts. “It really took off,” he says, resulting in a BBC interview that was picked up by other news sources. The results reached a lot of people, but the approach worked because the topic was large marine mammals. “The same student has a statistical methods paper coming out that will probably have a bigger impact on the field,” says Branch, “but it just isn’t going to be as newsworthy.”

Using metrics correctly: Always put them in context

As new measures of academic performance appear, experts stress that quantitative indicators are only part of what counts as scientific impact. “These metrics are never used in a vacuum,” says Neill. “They enhance recommendation letters, teaching experience, funding success, and institutional service.” A solid publications profile can lead to a candidate interview, Pejrup says, but the interviewee’s ability to describe research goals and impact in conversation is what really counts.

Sarli agrees that numbers and graphs are powerful but should always be presented with context. When using bibliometrics or other performance indexes, she advises providing a description of the measure and its limitations. Quantitative indicators, she says, should always be part of a narrative about your scientific influence. “No single metric is sufficient for measuring performance, quality, or impact,” she says. “Go beyond numbers to tell your story.”

Chris Tachibana is a science writer based in Seattle, USA, and Copenhagen, Denmark.

DOI: 10.1126/science.opms.r1700173
THE DEPARTMENT OF BIOLOGY AT SAN DIEGO STATE UNIVERSITY invites applications for a tenure-track faculty position in CANCER BIOLOGY at the Assistant Professor level. We are seeking a candidate whose research is at the forefront of cell and molecular biology in the field of cancer biology. We strongly encourage candidates focusing on viral-based cancer, cancer immunology, DNA replication defects in cancer, stem cell involvement in cancer and bioinformatics approaches to defining tumor heterogeneity and population risk factors. Individuals focusing on cancer health disparities research, particularly as applied to the Latino population, are strongly encouraged to apply to bolster the Department’s connection to the SDSU-UCSD Cancer Center Comprehensive Partnership to Advance Cancer Health Equity grant funded by the National Cancer Institute. The successful candidate will be expected to develop an externally funded, independent research program involving students in the Department of Biology at SDSU at all levels including undergraduate, Masters and doctoral students, and foster collaborations within SDSU, as well as with other departments at UCSD and other institutions. Please visit our website at http://www.bio.sdsu.edu/ for more information. Participation in the teaching mission of the Department of Biology, and University and/or community service is also expected. Applicants must hold a Ph.D. or equivalent degree and have postdoctoral experience.

Apply via Interfolio at https://apply.interfolio.com/40508. Review of applications will begin March 1, 2017, and will continue until the position is filled.

SDSU is a Title IX, Equal Opportunity Employer.

THE GEORGIA INSTITUTE OF TECHNOLOGY has been ranked among the top ten public universities in the United States for the past 16 years, aiming to meet grand scientific and technological challenges while educating tomorrow’s leaders. The School of Chemistry and Biochemistry is seeking applications from outstanding tenured faculty to fill an endowed professorship in the area of bioanalytical chemistry, broadly defined, including the creation or measurement of biomolecular structure and function and related questions. Relevant fields include, but are not limited to, biochemical/immunological analysis, diagnostics, biomarkers, biosensors, bioinformatics, omics, molecular recognition, advanced analytical systems (including novel instrumentation, method development, novel materials for sensing and diagnostics, multidimensional analysis, analytics theory), directed evolution, and functional materials development. The successful candidate for this Vasser-Woolley Eminent Scholar position will join an interdisciplinary faculty and Institute dedicated to the highest standards of fundamental science, scholarship, and impact. We encourage the application of mid-career and senior faculty, or the equivalent at non-academic institutions, with a proven track record of leading-edge research and excellence in teaching. Experience or interest in translational research and the development of intellectual property is a plus; significant resources and partnerships are available for these activities on campus and in the local and state community. Inquiries can be addressed to VWsearch@chemistry.gatech.edu. Candidates should submit the following materials electronically, as per the instructions found at the web address below: an application letter, curriculum vitae, and a description of research plans (particularly if future plans differ significantly from past efforts).

https://academicjobsonline.org/ajo/jobs/8867

The application deadline is March 15, 2017, with application review continuing until the position is filled.

Georgia Tech is an Equal Education/Employment Opportunity Institution.

Go to ScienceCareers.org to conduct your job search the easy way.

- Search thousands of job postings
- Create job alerts based on your criteria
- Get career advice from our Career Forum experts
- Download career advice articles and webinars
- Complete an individual development plan at “myIDP”

Target your job search using relevant resources on ScienceCareers.org.

Basic and Translational Cancer Research Scientists

Georgia Cancer Center at Augusta University in Augusta, GA is undergoing an unprecedented expansion in its basic, translational and population sciences programs as part of an initiative to achieve designation as an NCI Cancer Center. Following the successful completion of Phase 1 of this expansion, we invite applications for positions at Assistant, Associate, and Full Professor levels from interested individuals having expertise in tumor immunology, tumor angiogenesis, cancer genetics and genomics, chaperone biology, cancer metabolism and experimental therapeutics.

Applicants must have active extramural research funding (preferably from NCI) and a strong track record of independent research. Ideal candidates will have conducted research in an NCI-designated Cancer Center. Successful applicants will join one of our three collaborative programs that work closely with clinical research oncologists to promote translational research.

A competitive salary and start-up package will be provided, commensurate with experience and academic qualifications. A summary of research interests, curriculum vitae, and names of three references should be sent to: Dr. Rhea-Beth Markowitz at rbmarkowitz@augusta.edu.

Augusta University is an Equal Employment, Equal Access, and Equal Educational Opportunity and Affirmative Action Institution. Also, Augusta University is a federal contractor and desires priority referrals of protected veterans. It is the policy of the University to recruit, hire, train, promote and educate persons without regard to age, disability, gender, national origin, race, religion, sexual orientation or veteran status.
For recruitment in science, there’s only one *Science*.

Hiring Postdocs? This feature discusses ways to navigate the challenges that come with technology-related discoveries including patents and intellectual property. Scientists will learn how to best communicate with tech transfer offices and how to establish credit for those involved in the project. Be sure to communicate with these eager readers by highlighting career opportunities in your organization.

What makes *Science* the best choice for recruiting?
- Read and respected by 400,000 readers around the globe
- 80% of readers read *Science* more often than any other journal
- Your ad dollars support AAAS and its programs, which strengthens the global scientific community.

Why choose this Faculty Feature for your advertisement?
- Relevant ads lead off the career section with a special “Postdoc” banner
- Special bonus distribution to the National Postdoc Association meeting, 17–19 March, San Francisco, CA
- Special bonus distribution to the National Science Teachers Association meeting, 30 March – 2 April, Los Angeles, CA.

Expand your exposure by posting your print ad online:
- Link on the job board homepage directly to postdoc positions
- Dedicated landing page for postdoc positions.

Produced by the *Science*/AAAS Custom Publishing Office.

Deliver your message to a global audience of targeted, qualified scientists.

129,559 subscribers in print every week

420,971 monthly unique browsers on ScienceCareers.org

60% of our weekly readers are Ph.D.s

Postdoc Careers

Issue date: March 3

Book ad by February 16

Ads accepted until February 24 if space allows.

To book your ad: advertise@sciencecareers.org

The Americas
+202 326 6577

Japan
+81 3 6459 4174

Europe/RoW
+44(0) 1223 326528

China/Korea/Singapore/Taiwan
+86 131 4114 0012

On ScienceCareers.org

生产的由AAAS个性化出版办公室。

招聘科学人才，只有《科学》。
The 2017 Tinker-Muse Prize for Science and Policy in Antarctica

The “Tinker-Muse Prize for Science and Policy in Antarctica” is a USD $100,000 unrestricted award presented to an individual in the fields of Antarctic science and/or policy who has demonstrated potential for sustained and significant contributions that will enhance the understanding and/or preservation of Antarctica. The Prize is inspired by Martha T. Muse’s passion for Antarctica and is a legacy of the International Polar Year 2007-2008.

The prize-winner can be from any country and work in any field of Antarctic science and/or policy. The goal is to provide recognition of the important work being done by the individual and to call attention to the significance of understanding Antarctica in a time of change. A website with further details, including the process of nomination, closing date and selection of the Prize recipients, is available at www.museprize.org.

The Prize is awarded by the Tinker Foundation and administered by the Scientific Committee on Antarctic Research (SCAR).

Nominations open until 17 May 2017

Science Careers Job Fair
at the AAAS Annual Meeting

February 17, 2017 | 11:00 AM – 4:00 PM EST

A Day of Job Opportunities and Career Workshops

JOB SEEKERS! Science Careers and AAAS offer an exciting career event at the 2017 AAAS Annual Meeting in Boston, Massachusetts. Join us for a chance to meet with recruiters from top scientific organizations and to get valuable advice from career experts. The combination of valuable career development content and exciting career opportunities makes this free event a “must-attend” for scientists.

For more details and to register, visit sciencemag.org/careers/jobfair

ScienceCareers
FROM THE JOURNAL SCIENCE

DOES YOUR LAB COMBINE COMPUTATIONAL AND EXPERIMENTAL STRATEGIES TO INVESTIGATE SIGNALING NETWORKS?