Brilliant Colors. Powerful Results.
IHC Detection Kits & Chromogens

Improve Your Workflow with a Complete Range of Innovative Tools for IHC Detection

Enzo offers a complete range of products to help improve the quality and efficiency of your IHC process from start to finish. Our high-sensitivity and low background reagents, combined with the market’s most extensive palette of unique chromogens, provide the flexibility needed for simple or complex protocols.

- POLYVIEW® PLUS non-biotinylated nanopolymer detection reagents for minimal background without sacrificing signal
- HIGHDEF® chromogens for high sensitivity and intensity
- MULTIVIEW® kits for multiple detection of antigens in a single tissue sample
- Detection reagents and chromogens validated to produce impeccable results both manually and on automated stainers
- Over 1,000 IHC validated antibodies

Four-color multiplex IHC of human tonsil tissue using HIGHDEF chromogens.

© 2017 Enzo Life Sciences
Target with precision.

Introducing the NEBNext Direct™ Cancer HotSpot Panel

Using a unique approach, the NEBNext Direct Cancer HotSpot Panel enriches for 190 common cancer targets from 50 genes prior to next generation sequencing. Combining a novel method for hybridization-based target enrichment with library preparation, the NEBNext Direct technology reduces processing time and minimizes sample loss. Ideal for automation, NEBNext Direct enables highly-specific deep sequencing of genomic regions of interest for the discovery and identification of low frequency variants from challenging sample types.

Visit NEBNextDirect.com to learn more and to inquire about sampling this product.

TARGETS INCLUDE REGIONS FROM THE FOLLOWING CANCER-RELATED GENES, INCLUDING >18,000 COSMIC FEATURES:

<table>
<thead>
<tr>
<th>ABL1</th>
<th>EGFR</th>
<th>GNAQ</th>
<th>KRAS</th>
<th>PTPN11</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1</td>
<td>ERBB2</td>
<td>GNAS</td>
<td>MET</td>
<td>RB1</td>
</tr>
<tr>
<td>ALK</td>
<td>ERBB4</td>
<td>HNF1A</td>
<td>MLH1</td>
<td>RET</td>
</tr>
<tr>
<td>APC</td>
<td>EZH2</td>
<td>HRAS</td>
<td>MPL</td>
<td>SMAD4</td>
</tr>
<tr>
<td>ATM</td>
<td>FBXW7</td>
<td>IDH1</td>
<td>NOTCH1</td>
<td>SMARC1</td>
</tr>
<tr>
<td>BRAF</td>
<td>FGFR1</td>
<td>IDH2</td>
<td>NPM1</td>
<td>SMO</td>
</tr>
<tr>
<td>CDH1</td>
<td>FGFR2</td>
<td>JAK2</td>
<td>NRAS</td>
<td>SRC</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>FGFR3</td>
<td>JAK3</td>
<td>PDGFR</td>
<td>STK11</td>
</tr>
<tr>
<td>CSF1R</td>
<td>FLT3</td>
<td>KDR</td>
<td>PIK3CA</td>
<td>TP53</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>GNA11</td>
<td>KIT</td>
<td>PTEN</td>
<td>VHL</td>
</tr>
</tbody>
</table>

For research use only; not intended for diagnostic use.

NEW ENGLAND BIOLABS® and NEB® are registered trademarks of New England Biolabs, Inc.
NEBNEXT DIRECT™ is a trademark of New England Biolabs, Inc.
Expression alone is limited.
Context completes the picture.

Visualize expression of immune checkpoint markers in situ with RNAscope® ISH technology.
Learn more at acdbio.com
Deciphering Cancer

Immunometabolism: Antibodies for the Study of Key Signaling Networks

Download pathways at www.cellsignal.com/cancerpathways
Be Among the First to Publish in *Science Robotics*

Now accepting manuscripts

Science Robotics is a unique journal created to help advance the research and development of robotics for all environments. *Science Robotics* will provide a much-needed central forum to share the latest technological discoveries and to discuss the field’s critical issues.
Interested in the human cell? Order a free copy of this poster to learn about the most detailed mapping of the human cell ever done. The Human Protein Atlas project is presenting a high-resolution map of the human cell. The proteins have been localized with high precision to cellular organelles, structures and sub-structures, with high-resolution images freely available for you to explore.

The antibodies used are Triple A Polyclonals provided by Atlas Antibodies.
SciLifeLab, Science for Life Laboratory, is a Swedish research center within molecular biosciences with focus on health and environment. To further strengthen the research environment at SciLifeLab the center regularly recruits young, talented research leaders to become SciLifeLab fellows. Each fellow is recruited by one of the center host universities and receives funding from them.

One of the SciLifeLab fellows is Paul Hudson whose research focuses primarily on metabolism of photosynthetic cyanobacteria. The idea is to manipulate the bacteria to make chemicals and fuels from carbon dioxide, water and light, which are all free abundant resources. Paul’s aim is always to link fundamental science with an application.

“Our dream is to create a microorganism that can simultaneously reduce greenhouse gases and produce something of value, like a fuel or chemical that we right now can only get from oil”. Paul said.

Paul did his PhD at the University of California, Berkeley, US, and then moved on to a Post Doc position in proteomics at KTH Royal Institute of Technology in Sweden before he applied for the SciLifeLab fellows program.

“There was this concept at SciLifeLab of building up expertise in high throughput genomics and systems biology and I thought it would be interesting to apply these new technologies to study and engineer an ancient organism like cyanobacteria. The start up-package offered lots of financial support, which was appealing of course.”

“Right now we are applying systems biology tools to cyanobacteria in a way that I think is only possible at SciLifeLab. Being here has changed our scientific approach to old problems; as a result I have started thinking about cellular processes in a different way. I also get a lot of great input from the other SciLifeLab fellows. For example, I sit next to Vicent Pelechano who is an expert in RNA sequencing techniques. Applying these makes our research unique in the field of metabolic engineering.”

Recently, Paul’s group also expanded to study other bacteria, such as those that use hydrogen gas as their energy source. That is very relevant for Sweden because the country has an abundance of sources for hydrogen like the forest industry and hydroelectric power where electricity is used to split water and make hydrogen.

“Sweden is good for me professionally because there are many avenues of support for environmental research. The government and the industry in Sweden are unified in this and are consistent and serious in wanting to reduce greenhouse gases. I can definitely see myself staying in Sweden.”

SciLifeLab – a national resource

SciLifeLab is a Swedish research center within molecular biosciences with focus on health and environment. It is also a national center with the mission to develop, use and provide advanced technologies. The center infrastructure encompasses a multitude of biomolecular technologies and bioinformatics services. National funding makes SciLifeLab’s services and expertise available to researchers in all of Sweden.

The center is a joint effort by four Swedish universities (Karolinska Institutet, KTH Royal Institute of Technology, Stockholm University and Uppsala University). Founded in 2010, the center today encompass more than 1 200 researchers mainly located in and around the two center nodes in Stockholm and Uppsala.
2016 Winner
Gilad Evrony, M.D., Ph.D.
Mount Sinai Hospital
For research on technologies to sequence and analyze the genomes of single cells from the human brain

Call for Entries

Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international award which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. To be eligible, you must be 35 years of age or younger.

You could be next to win this prize and to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply!
Learn more at:

www.eppendorf.com/prize
You treasure. We treat.

Groundbreaking treatments for every family member.

At UC Davis, we’re driven to protect the health of people, animals and our planet. Our medical experts — including veterinarians from the number one program in the world — team up with other UC Davis experts to discover translatable treatments and cures. Their breakthroughs in cancer, cardiology, infectious diseases and a host of other conditions are forging the way to better health for your pets, your family members and all living things. Learn more at 21stcentury.ucdavis.edu.
NEED TO REPLACE YOUR ANTIBODY SUPPLIER?

MAKE IT AN UPGRADE!

There's nothing quite like the feeling of finding an antibody that works as designed. And it's all due to over 40 years of experience in applying stringent standards to every small and bulk order. From polyclonals, monoclons and recombinants, to secondaries & ELISAs, we manufacture and validate our antibodies on-site to ensure target specificity and sensitivity, and guarantee 100% everything we produce. Upgrade to Bethyl. We put a lot in every drop.

Discover free shipping* with your next trial size order:
BETHYL.COM/UPGRADE

Detection of human and mouse RelA/p65 by WB and IP from whole cell lysate (left), RelA/p65 in a human breast carcinoma by IHC (right) and localization of RelA/p65 binding sites by ChIP sequencing. Affinity purified rabbit anti-RelA/p65 antibody, Cat# A301-824A, used in all applications.

*Terms & Conditions Apply. Please see website for trial sizes and complete details. ©2017 Bethyl Laboratories, Inc. All rights reserved.
How it works...

PNAS Submission & Editorial Review

Submissions are welcomed from researchers all over the world.
Authors do not need to have a connection to an NAS member to publish in PNAS.

PNAS is committed to transparency in its editorial review process.
FAQs for authors explaining the review process are available at www.pnas.org/site/authors/authorfaq.xhtml.

All articles are evaluated solely on their scientific merit by peers—
not by staff editors. Accepted papers must be of exceptional scientific importance and intelligible to a broad scientific audience.

PNAS uses a three-tier review process.
An NAS member makes the final decision for every paper

1. **Editorial Board Member**—Each paper is assigned to an Editorial Board member from one of the 31 NAS disciplines.

2. **NAS Member Editor**—If the Editorial Board member decides the paper should proceed further, it is assigned to an NAS Member Editor, a professional scientist and active researcher, who oversees the review process and determines suitability of the work for PNAS.

3. **Independent Peer Reviewers**—Recognized subject experts are selected by the Member Editor to review the work.

www.pnas.org
Winners will have their essay published by *Science*, earn up to 30,000 USD and receive a prize in Stockholm in December. Find out more: www.sciencemag.org/prizes/scilifelab

Cell and Molecular Biology | Ecology and Environment | Genomics and Proteomics | Translational Medicine

Will your recent PhD graduate win?
Publish your research in

Science Immunology

NOW ACCEPTING PAPERS

Science Immunology, the newest member in the *Science* family of journals, provides original, peer-reviewed research articles that report critical advances in all areas of immunological research, including studies that provide insight into the human immune response in health and disease. Share your research with *Science Immunology*’s global readership and submit your manuscript today!

What will your discovery be?
Submit your manuscript today at ScienceImmunology.org
Cancer immunotherapy comes of age

Oncologists have long rested their treatment plans on three so-called “pillars”—chemotherapy, surgery, and radiation. But in recent years, scientists have been busily erecting a fourth pillar: immunotherapy. The idea of harnessing the immune system to fight cancer has already moved from the lab to the clinic, thanks to technologies such as checkpoint inhibitors and genetically engineered immune cells. By Amber Dance

Fifteen years ago, Renier Brentjens returned from a vacation and rushed to his lab at Memorial Sloan Kettering Cancer Center in New York. A month earlier, he’d treated mice with genetically engineered immune cells that he hoped would combat cancer. And when he got to the lab, he found that all of the mice were still alive.

Amazed, Brentjens thought to himself, “This stuff might actually work.” And it did—in 2013, he and his colleagues reported that they used this kind of cell therapy to treat five people with B-cell acute lymphoblastic leukemia, and all five achieved total remission, though one later relapsed. That success ignited a “firestorm” in the development of engineered immune cells, says Brentjens.

The idea behind immunotherapy is to harness the system the body normally uses to attack pathogens and encourage it to go after cancerous cells instead. The field has exploded in recent years, with approval of a handful of medications and nearly 1,500 cancer immunotherapy trials listed on the U.S. National Institutes of Health ClinicalTrials.gov registry.

Two approaches getting plenty of attention are checkpoint inhibitors and modified cells known as “chimeric antigen receptor (CAR) T cells.” The former approach takes the brakes off of anticancer immune cells. The latter, used by Brentjens, involves genetically engineering immune cells to allow them to home in on cancerous cells.

But those are just two of many ideas under the immunotherapy umbrella, which also includes approaches such as vaccines. Those developing such therapies use a variety of techniques and tools, including antibodies, gene editing, and viral gene transfer. Unfortunately, these treatments don’t usually work for all cancers, and can cause serious side effects and even death—meaning there is still plenty of work to do to improve them and to eliminate potential risks.

The answer to all cancers?

While one should be cautious about the word “cure,” there are certainly patients from early trials who are still alive 10 years later with apparently little or no cancer in their bodies, according to Alan Korman, vice president of immuno-oncology discovery at Bristol-Myers Squibb in Redwood City, California, who has been involved with developing two of the checkpoint inhibitors now on the market, nivolumab and ipilimumab.

Indeed, cancer immunotherapy is not a new idea. The late-19th century surgeon William Coley found that deliberately inducing bacterial infections in his patients could sometimes mysteriously eliminate cancer. Though he didn’t understand how at the time, it’s now believed that the bacteria or bacterial products Coley used activated his patients’ immune systems. As radiation—which was easier to apply and offered more consistent results—became a popular therapy, Coley’s toxins fell by the wayside.

Another early hint of immunotherapy’s potential came in the late 20th century, when clinical trials showed that treating melanoma with interleukin-2 (IL-2), an immune cell regulator, yielded survival beyond five years for many patients.

Checkpoint bypass

In the bodies of many people with cancer, there are already immune cells that can recognize and attack the tumor. But tumors defend themselves by producing compounds that activate biological “checkpoints” to stifle those protective cells.
Now medications have been developed to bypass those checkpoints. The first such medication to undergo testing was ipilimumab, an antibody to the inhibitory receptor CTLA4. Ipilimumab sits on the surface of immune T cells and blocks CTLA4’s activity, allowing the T cells to attack tumors. Soon after its success, scientists also achieved favorable results with antibodies that block either PD-1, expressed on immune cells, or its suppressor, PD-L1, found on tumors and some immune cells. Today, four such checkpoint inhibitor antibodies are on the market—nivolumab (Opdivo) and pembrolizumab (Keytruda) against PD-1; atezolizumab (Tecentriq) against PD-L1; and ipilimumab (Yervoy) against CTLA4—and other potential checkpoint targets are being actively pursued.

Checkpoint inhibitors have already changed cancer treatment, says David Kaufman, executive director of translational immuno-oncology and lead for oncology clinical research at Merck Research Laboratories in North Wales, Pennsylvania, which makes the checkpoint inhibitor pembrolizumab. “What it’s done is displace chemotherapy in many settings where chemotherapy was either the only option or the best of a handful of less-than-ideal solutions,” he says.

Checkpoint receptors are just one type of immune molecule that scientists hope to take advantage of. “Almost anything on the surface of a T cell is now a potential target for activating the immune response,” says Korman, adding that there are also molecules on T cells that, when bound, shun up the immune response. These molecules are called “costimulatory receptors,” and companies are already testing whether binding and activating them with antibodies could improve immune activity.

Different patients, different responses

For some patients, treatment with checkpoint inhibitors can destroy cancer, or at least keep it in check, leading to “a new détente between the tumor and the immune system,” says Kaufman. Around 20% of all cancers respond to this type of treatment, he estimates. Those tend to be the people who already have cancer-targeted T cells waiting in their tumors before they even start immunotherapy. All their T cells need is for the checkpoint inhibitors to unfetter them. But for other patients, checkpoint inhibitors don’t work.

There are probably multiple reasons for the different response patterns, and researchers at Merck and elsewhere are trying to understand them. It might be that certain tumors have antigens—that the molecules immune cells recognize as foreign or dangerous—that are hard for the immune system to identify, Kaufman explains. Or perhaps T cells are present but are unable to reach the cancer cells, he adds.

Another issue is that sometimes patients respond to checkpoint inhibitors at first, then develop resistance. Researchers are just starting to figure out why that might be, says Kaufman. In some cases, the tumors seem to change, making themselves resistant to the attacking molecules produced by T cells. Or they may undergo mutations rendering them invisible to those T cells, and thus evade attack.

For those unlucky patients who don’t respond to checkpoint inhibitors, others are working on cancer vaccines as a way to wake up the immune system and bring those T-cell “soldiers” to the tumor site. The idea, explains Elizabeth Jaffee of Johns Hopkins University School of Medicine in Baltimore, Maryland, is to generate new T cells specific to the cancer, so follow-up treatment with checkpoint inhibitors can set them to work. She is now planning for trials with a fast genetic-sequencing technology that defines unique mutations in tumor cells—called “neoantigens”—to create tailored vaccines.

Riding in CARs

Checkpoint inhibitors may also work in combination with cell-based therapies. Normally, the body eliminates T cells that would attack its own, “self-” tissues and cause autoimmune disease, leaving only immune cells that attack anything “nonself.” That gives cancer an advantage, since it’s also a self-tissue. The idea of CAR T-cell therapy, explains Brentjens, is to “re-educate” certain T cells to identify the tumor as nonself.

T cells use T-cell receptors (TCRs) to identify antigens. Researchers add a gene to a T cell to manufacture modified TCRs, or CARs, on T-cell surfaces. These specialized receptors contain an antibody-like part that binds to a specific protein (antigen) on a cancer cell. Further inside the cell, the CARs have a domain that mimics the signals activated by antigen-attached or “bound” TCRs. A transmembrane domain, and a flexible hinge that allows the antigen-binding portion to reach its target, round out the chimeric protein. Researchers frequently use lentiviruses or retroviruses to deliver the genetic payload to the T cells. Once inside a patient, when the CAR-bearing T cell binds a cancer cell, it should respond as if it’s seen an invader and attack.

So far, CAR T-cell trials have focused primarily on blood cancers. All B cells in the blood, including any cancerous ones, express a marker called “CD19,” so researchers designed CARs that bind to it. In a recent trial, Novartis announced that 89% of children with acute lymphoid leukemia were alive after six months. Without the treatment, one would expect that...
number to be much lower, says immunologist Bruce Levine of the Perelman School of Medicine, University of Pennsylvania, who collaborates with the company. For this treatment, in addition to adding the CAR, researchers activate the cells with a costimulatory antibody. Then they grow the engineered cells in bioreactors before returning them to the patients.

Unfortunately, receiving CAR T-cell therapy is no Sunday drive. One of the signs it’s working is that the patient gets miserably, dangerously sick. Amping up the immune system causes the cells to release signaling molecules called “cytokines,” and can lead to a “cytokine storm.” This causes symptoms such as nausea, fatigue, and fever—a handful of patients have died as a result.

But when it works, it works wonders. During an early trial in 2010, Levine and his colleagues calculated that each of their two patients lost between 2.5 and 8 pounds of leukemia cells. Two of those patients are alive today.

Seeking the “Holy Grail”

Despite these successes, CAR T-cell therapy remains immature. “We have a Model A Ford,” says Brentjens. “We need a Ferrari.” Reducing toxicity is a key goal. One backup system researchers are exploring is to include a self-destruct gene in their CAR T cells, such as a caspase cell suicide gene, that can be turned on by a medication, so they can delete the engineered cells if necessary.

Another major challenge is to take CAR T-cell therapy beyond blood cancers. Even though the treatment attacks all of the cells expressing CD19—cancerous and healthy ones—patients can live for a time without those kinds of cells. That’s not the case with the body’s organs.

“The Holy Grail” would be a molecule expressed on all tumor cells that is not expressed on any healthy cell in the body,” says John Maher, an immunologist and clinician at King’s College London.

CAR aficionados have limited choices for targets because the CARs can only access molecules on the surface of cancer cells. That’s why some scientists prefer to work with natural TCRs, which recognize snippets of internal proteins displayed on a cell’s surface. “In a way, the TCRs dig inside the cancer cells,” says Chiara Bonini of San Raffaele University and Hospital in Milan, Italy. She is working on a procedure to take a patient’s T cells, remove their TCR genes with zinc-finger nucleases, and use a lentivirus to add in new, tumor-specific TCRs.

A team led by Steven Rosenberg at the National Cancer Institute (NCI) in Bethesda, Maryland, has found that the natural TCRs on T cells already resident in a tumor are often pretty effective. In one experiment, they collected immune cells from a patient’s tumor, grew them in culture, and selected the ones that recognized cancerous cells. Then, they gave these chosen cells back to the patient. Doing this, the group obtained “dramatic” results with melanoma, says Stephanie Goff, a member of Rosenberg’s team. Up to 70% of patients saw their tumor load decrease substantially; in one trial, 40% had their tumors disappear for at least five years after treatment.

Other roadblocks for CAR T-cell therapy

Researchers are also beginning to load their CAR T cells with additional factors that should help them cut through the tumor microenvironment. Brentjens, for example, has engineered CAR T cells that make their own IL-12, which amplifies immune responses in a solid-tumor environment.

Yet another issue with CAR T-cell therapy is its personalized nature. Making every batch of individualized T cells currently takes “a lot of labor,” says Levine.

Collectis thinks it has the answer to making off-the-shelf, universal CAR T-cell treatments, says Julianne Smith, vice president of CAR-T development at the Paris-based company’s New York City branch. The company uses gene editing, based on precisely targeted transcription activator-like effector nuclease (TALEN) enzymes, to delete part of the TCR complex from donor immune cells, so they shouldn’t attack a new host. These CAR T cells will eventually be rejected by the recipient, but Smith thinks they’ll last long enough to perform their duty. The cells are in clinical trials now.

Back to the bench

The normal progression of biomedical science is to translate an idea in the lab into a treatment in the clinic. But with so much still unclear about how immunotherapies work, which approach to take, and how to improve the available treatments, lab scientists are busy.

Researchers want to understand the tumor microenvironment, and how a person’s microbiome might influence immunotherapy. Moreover, they are eagerly searching for biomarkers that would tell them if immunotherapy—which can take time to show definitive results—is working in a patient, says Jaffee. And they are also poring over tissue samples from patients who were treated, trying to differentiate those who respond to a given immunotherapy from those who don’t. That, says Kaufman, involves sequencing DNA and RNA, examining epigenetic markers, and visualizing tissues via immunohistochemistry.

Nonetheless, immunotherapy has already handed cancer physicians a powerful new weapon, not to mention an entirely new area of biology to master. “The oncologists are becoming the new immunologists,” says Maher.

Amber Dance is a freelance writer living in Los Angeles.

DOI: 10.1126/science.opms.p1700113
T-Cell Culture Medium
PRIME-XV T Cell CDM is an animal component-free medium for T-cell culture. The medium has been developed to maximize consistent growth of T cells while maintaining their functionality and therapeutic potential. An important trend in cell-culture media for gene therapies and immunotherapies is the move away from animal-derived and undefined components to serum-free, animal component-free, and chemically defined culture conditions. When working with T cells, the advantage of this is twofold: Animal-derived components are variable between lots, and the naturally occurring cytokines and growth factors in them can result in undesirable effects. For example, cytokines and growth factors have been shown to impact growth, phenotype, and the potential of T cells to polarize into therapeutic subtypes. PRIME-XV T Cell CDM removes this variability to provide more consistency between lots. Chemically defined media (CDM) also reduce the risk of introducing foreign agents or impurities from undefined components, thereby facilitating scale-up to commercial production and the regulatory submission process. Irvine Scientific
For info: 800-577-6097
www.irvinesci.com

TIGIT Receptor Products
AMS Biotechnology (AMSbio) has TIGIT receptor products for immunotherapy research. Human T-cell immunoreceptor with immunoglobulin (ig) and immunoreceptor tyrosine-based inhibition motif (ITIM) domains—TIGIT—is a receptor expressed on the surface of human T cells and natural killer cells that binds to CD155 and CD112 present on the surface of dendritic cells. Antibodies and other agents that inhibit this signaling pathway increase the immune response, particularly in certain cancers. A recombinant Jurkat cell line that constitutively expresses a full-length human TIGIT and a firefly luciferase gene under the control of nuclear factor of activated T cell (NFAT) response elements is available to identify antagonistic monoclonal antibodies. Two TIGIT homogeneous assay kits measure the inhibition of TIGIT binding to CD112 (PVR2/Nectin-2) and CD155, respectively. AMSbio has also launched Fc Fusion TIGIT and biotinylated Fc Fusion TIGIT recombinant proteins for protein-binding studies and for screening small molecules and antibodies.
AMS Biotechnology
For info: +44-(0)-1235-828200
www.amsbio.com

Antigen-Specific T-Cell Reagents
To aid in the identification of antigen-specific T cells, BioLegend is proud to launch Flex-T Major Histocompatibility Complex (MHC) tetramers, a novel technology licensed from Sanquin Blood Supply Foundation. The T-cell-mediated immune response is defined by the interaction between antigen-presenting cells and T cells, through the MHC and the T-cell receptor (TCR). MHC molecules present a peptide to antigen-specific T cells that recognize this peptide. Soluble, monomeric MHC molecules bind very weakly to the TCR. However, by making a tetramer using a fluorescently labeled streptavidin conjugate, the complex has greater avidity to the T cell and maintains more stable binding by interacting with several TCRs, making it useful for flow cytometry detection of antigen-specific T cells. Flex-T has the unique property of allowing the loading of peptides of interest into the binding site of the MHC groove, by using UV light-labile, exchangeable peptides. BioLegend
For info: 877-246-5343
www.biolegend.com

Gold Nanoparticles
InnovaCoat GOLD 40-nm nanoparticles enable customers to quickly generate highly stable, covalent gold-antibody conjugates at R&D and manufacturing scales. The InnovaCoat GOLD carboxyl surface is optimized for single-step EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) covalent coupling without signs of aggregation, and eliminates the need for EDC/NHS (N-Hydroxysuccinimide) preactivation and washing steps associated with traditional conjugations. The process is also significantly faster than standard methods, with conjugates ready to use in less than 35 minutes. InnovaCoat GOLD carboxyl nanoparticles have a narrow size distribution, a uniform spherical shape, and a high batch-to-batch consistency.
Innova Biosciences
For info: +44-(0)-1223-661000
www.innovabiosciences.com

Multiplex Immunoassays
Abcam’s multiplex immunoassays combine Firefly hydrogel technology with high-performance antibodies to simultaneously measure up to 75 different proteins in only 12.5 µL of sample. With sensitivity below 1 picogram/mL, the assay can provide multiplex data within hours, even in complex matrices with low target concentrations. Unlike many other multiplex assays that are bead-based, these assays can be run on most common flow cytometers, deliver 4–5 logs of linear dynamic range, and include free, easy-to-use analysis software. Additionally, researchers can choose from a growing menu of analytes to create a customized, ready-to-use panel to analyze complex inflammatory responses to diseases or treatments. Thanks to shared antibody pairs, users can seamlessly switch between Abcam’s 90-minute SimpleStep ELISA assays and multiplex immunoassays while maintaining high correlation. For even more flexibility, Abcam offers its multiplex immunoassays as both a convenient service and as kits for researchers to employ in their own labs.
Abcam
For info: 888-772-2226
www.abcam.com/multipleximmunoassay

Fc Receptor Reagents
Sino Biological offers a comprehensive set of tools for Fc receptor-related studies, including recombinant proteins, antibodies (rabbit monoclonal antibodies (mAbs), mouse mAbs, and rabbit polyclonal antibodies (pAbs)); ELISA kits; and Open Reading Frame (ORF) complementary DNA clones. Fc receptors are proteins belonging to the immunoglobulin superfamily that contribute to the protective functions of the immune system, and are found on the surface of certain cells—including B lymphocytes, natural killer cells, macrophages, neutrophils, and mast cells. Their name is derived from their binding specificity for a part of an antibody known as the fragment crystallizable (Fc) portion. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. There are many kinds of Fc receptors, which are named based on the type of antibody that they recognize. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Over 9,000 quality antibody products for scientists are in stock.
Sino Biological
For info: +86-400-890-9989
www.sinobiological.com

newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this issue. emphasis is given to new, chief characteristics, and availability of products and materials. endorsement by science or aaas of any products or materials mentioned is not implied. additional information may be obtained from the manufacturer or supplier.
Reach for the stars

Profit from excellent research conditions in Germany

The Alexander von Humboldt Professorships are Germany’s way of creating a beacon effect and energising its research landscape. Every year, the Alexander von Humboldt Foundation is offering ten of the world’s leading researchers up to five million euros each to create new or consolidate existing internationally visible research focus areas at German universities.

Academics of all disciplines are eligible for an Alexander von Humboldt Professorship, provided that they are established abroad and recognised internationally as top-class researchers. They will be nominated by German universities – where appropriate in cooperation with non-university research institutions. Each Alexander von Humboldt Professorship will be sponsored for a period of five years on the premise that the university presents a convincing strategy to sustain the position once the funding period has come to an end.

This will allow new, long-term research groups to be established, conducting cutting-edge international research. The programme is financed by the Federal Ministry of Education and Research. The Humboldt Foundation actively promotes equal opportunities and therefore particularly welcomes nominations on behalf of leading female academics.

Closing dates for nominations: 15 April and 15 October

For detailed information please visit: www.humboldt-foundation.de/ahp-en
Whatever type of exosomal biomarker you’re interested in studying—whether it’s RNAs (miRNA and other non-coding RNA), DNAs, proteins, metabolites, or lipids—getting high quality, ready-to-analyze data is as easy as sending in your biofluid samples to SBI. Our experienced Exosome Services team takes care of all the rest, from exosome isolation and biomarker extraction up to QC and delivery of your data.

Generating small RNA-Seq libraries from low amounts of input RNA is just one example of how our services team is simplifying exosome-based biomarker discovery for our customers—visit systembio.com/exosome-services to see other examples, or contact us to discuss your project and get a quote by emailing services@systembio.com.