Introducing Luna® Universal qPCR and RT-qPCR Products

New England Biolabs is pleased to introduce a bright, new choice for your qPCR and RT-qPCR. Luna products have been optimized for robust performance on diverse sample sources and target types. Available for dye-based or probe-based detection, Luna products can be used across a wide variety of instrument platforms. With so many qPCR and RT-qPCR options available, why not make a simpler, more cost-effective choice that delivers the sensitivity and precision you expect for your qPCR and RT-qPCR.

Visit LUNAqPCR.com to request your sample today.
Gairdner Foundation is pleased to announce the 2017 Canada Gairdner Award laureates

Dr. Akira Endo
President, Biopharm Research Laboratories; Distinguished Professor Emeritus, Tokyo University of Agriculture and Technology, Tokyo, Japan

Canada Gairdner International Award
Awarded “For the first discovery and development of statins, inhibitors of cholesterol biosynthesis that have transformed the prevention and treatment of cardiovascular disease.”

Dr. David Julius
Professor and Chair of the Department of Physiology and the Morris Herzstein Chair in Molecular Biology and Medicine, UCSF, San Francisco, California, USA

Canada Gairdner International Award
Awarded “For determining the molecular basis of somatosensation – how we sense heat, cold and pain”

Dr. Lewis Kay
Professor, Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto; and Senior Scientist, Hospital for Sick Children, Toronto, Ontario, Canada

Canada Gairdner International Award
Awarded “For the development of modern NMR spectroscopy for studies of biomolecular structure dynamics and function, including applications to molecular machines and rare protein conformations”

Dr. Rino Rappuoli
Chief Scientist and Head External R&D at GSK Vaccines, Siena, Italy

Canada Gairdner International Award
Awarded “For pioneering the genomic approach, known as reverse vaccinology, used to develop a vaccine against meningococcus B which has saved many lives worldwide”

Dr. Huda Y. Zoghbi
Professor Baylor College of Medicine, Investigator Howard Hughes Medical Institute, and Director of the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA

Canada Gairdner International Award
Awarded “For the discovery of the genetic basis of Rett syndrome and its implications for autism spectrum disorders”

Dr. Antoine M. Hakim
Emeritus Professor, Neurology, University of Ottawa, Ottawa, Ontario, Canada

Canada Gairdner Wightman Award
Awarded “For outstanding research into stroke and its consequences and championing stroke prevention and treatment in Canada and beyond”

Dr. Cesar Victora
Emeritus Professor, Federal University of Pelotas, Pelotas, Brazil

John Dirks Canada Gairdner Global Health Award
Awarded “For outstanding contributions to maternal and child health and nutrition in low and middle income countries, with particular focus on the impact of exclusive breastfeeding on infant mortality and on the long-term impact of early-life nutrition”

Celebrating excellence, convening leaders and inspiring the next generation.
To get involved or learn more about the Gairdner Foundation visit Gairdner.org or follow our latest news via @GairdnerAwards
Call for Entries

Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international award which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. To be eligible, you must be 35 years of age or younger.

You could be next to win this prize and to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply!
Learn more at:

www.eppendorf.com/prize
欢迎参选

Eppendorf & Science 神经生物学奖
一年一度的 Eppendorf & Science 神经生物学奖是一项国际奖项，授予使用分子与细胞生物学方法在神经生物学领域取得非凡成果的青年科学家。所有进入终选的科学家都将由《Science》杂志高级编辑 Peter Stern 博士领命的独立科学委员会评出。年龄不超过 35 岁的科学家可以申请参选。

您可能就是下一位获奖者并获得：
> 25,000 美元奖金
> 获奖论文发表在《Science》杂志
> 得以全额资助参与美国神经科学协会年会和颁奖仪式
> 获邀参观 Eppendorf 位于德国汉堡的总部

申请非常容易！
想了解详情及往届获奖者，请登陆：

www.eppendorf.com/prize
2016 Winner
Gilad Evrony, M.D., Ph.D.
Mount Sinai Hospital
For research on technologies
to sequence and analyze the
genomes of single cells
from the human brain

Call for Entries

Eppendorf & Science Prize for Neurobiology
Eppendorf & Science神経生物学賞は、分子生物学や細胞
生物学に基づく神経生物学研究において、卓越した貢献を
なされた若手研究者に贈呈している国際賞です。
最終選考選出者ならびに受賞者は、Science誌編集主任Dr.
Peter Sternをはじめとする科学者達の独立委員会によって
選出されます。
35歳までの研究者が応募できます。

> 賞金：25,000米ドル
> Science誌に研究内容を掲載
> 米神経科学学会年次総会に併せて開催される授賞式へ
> の参加を全面サポート
> ドイツ、ハンブルクのエッペンドルフ本社にご招待

応募は簡単です！
本賞と過去の受賞者について詳しくはこちら：

www.eppendorf.com/prize
Sutter Instrument is now offering several systems or “Big Kits” that include dual manipulators and either manipulator stands and scope translator or a large moving stage.

FEATURES
- Discounted pricing offers savings and value
- Classic electrophysiology design – single system configuration
- 2 manipulators with each bundled system
- Easy toggle selection of active component
- Single ROE controls manipulators and components
- Manipulator, stage and translator features retained
- Compatible with a wide range of imaging software platforms

Upcoming features
- Systems biology: Metabolome—May 12
- Genomics: Microbiome—May 19
- Proteomics: Antibody validation—September 15
Adding depth to cell culture

The jump from two dimensions to three gives researchers a laboratory model that is just one step removed from working with cells in vivo. Technologies and techniques have recently proliferated—such as matrices, scaffolds, and other geometries—to coax cells to grow in a wide array of 3D structures. By Kendall Powell

As a postdoc studying human brain development and what goes wrong in conditions such as microcephaly, Madeline Lancaster faced the same familiar problems as her fellow lab researchers. For example, mice brains don’t behave or develop like tiny human brains. And the complex layers and involutions of the brain don’t evolve from neural stem cells grown flat on the bottom of a lab dish.

What she really needed was a mini-organ she could grow in the laboratory and manipulate for investigations. In 2013, Lancaster developed a technique to do just that: She grew cerebral organoids from human induced pluripotent stem cells (iPS). The key was selecting neural stem cells and embedding them in a gel made from several proteins typically found in the fortifying and nourishing space surrounding cells. Mimicking this region, called the “extracellular matrix” (ECM), set up the stem cells to grow in three dimensions. The cells spontaneously developed into mini-brains that resembled cooked egg whites, yet shared the proper layering and organizational characteristics of the embryonic human brain.

Providing the cells with the 3D matrix triggers their instincts to self-assemble, says Lancaster, now a group leader at the Medical Research Council Laboratory of Molecular Biology in Cambridge, United Kingdom. Her group has simplified the protocol further so that “it’s possible to generate cerebral organoids in any standard tissue culture room,” she says.

The traditional way of culturing cells in 2D for study in the lab often relied on immortalized cancer cell lines that came with significant problems—accumulated mutations and contaminations with other cell types from years of passaging in the lab. And often, cells grown on flat, hard plastic dishes in the laboratory did strange things, like stretch themselves as thin as possible.

“Many drug candidates have been successes in 2D culture because the cell morphology is flat, and cells can be easily attacked by the drug,” says John Huang, CEO and President of TheWell Bioscience, a biotech company from Newark, New Jersey, that specializes in 3D cell culture reagents. “But once they go into animals, the drugs fail because they don’t work the same way in 3D.” What many cell biologists would like, he says, are cell cultures that can be grown from a variety of patients’ cells, both healthy and diseased, and that act and grow like their counterparts in the body, even forming multilayer and multicell tissues.

Of course, culturing in 3D is not without its challenges. “When you put cells in a 3D environment, it’s harder to image them, to immunostain them to see what proteins are present, and to recapture those cells after you’ve cultured them,” says Kristi Anseth, a bioengineer who leads a research group at the University of Colorado Boulder.

But Anseth’s intuition—and that of the entire field—tells her that 3D culturing is more relevant to biology because the vast majority of cells in our bodies grow that way. Many companies have entered this space, in order to make the practice of 3D cell culturing and the downstream imaging or assaying of cells much more user-friendly.

Mind the scaffolding

The first step for 3D culturing of any kind is to get cells off of that hard plastic and onto something more comfortable. Matrigel is the “grand dame” of 3D matrices, developed nearly 30 years ago by Corning as an animal-derived matrix for tumor-cell invasion studies. It comes from a mouse sarcoma rich in ECM proteins like laminin, collagen, heparan sulfate proteoglycans, and a number of growth factors. That richness can be both a boon to researchers—Lancaster’s neuronal stem cells felt quite at home...
on this scaffold—and a limitation, by introducing unknown biological components into an experiment. Matrigel must also be refrigerated to remain a liquid, and starts to form a gel at just 10°C, requiring cold-room work.

Richard Eglen, vice president and general manager of Corning Life Sciences in Boston, Massachusetts, says many cells thrive in Matrigel with the right growth factors added, for example, hepatocytes that develop into liver organoids. “Matrigel was almost ahead of its time,” says Eglen. “In many cases, you get the proper cell differentiation and the cells start to self-organize as they would in the body.”

The Well Bioscience offers a pared-down, minimalist hydrogel that is easier to use than Matrigel. The animal origin–free polysaccharide VitroGel 3D is room-temperature stable, and only begins to polymerize into a gel when any culture medium containing calcium or sodium ions is added to it. Huang says typical hydrogels take only 10–15 minutes to form with a simple mixing step.

VitroGel 3D can be used as a softer, 2D coating, a 3D matrix for embedding cells, or as an injectable for animal studies. A second product, VitroGel 3D-RGD, includes a cell-surface binding site for most adhesive cells. Huang says it’s a plus for researchers to know that VitroGel 3D has no undesired biologic ingredients. Researchers can tweak the ingredients of their culture media to construct a hydrogel that includes whatever ligands or growth factors they want to be present and influencing the cells there.

Lubna Hussain, senior product manager for primary cells and 3D culture products at Basel-based Lonza Bioscience Solutions, advises researchers to “know what your end goal is and work backwards in 3D culturing.” Lonza’s RAFT (Real Architecture For 3D Tissue) 3D Cell Culture System contains rat collagen, media that supports cells during gelling, and 24- or 96-well absorbers to condense collagen. After mixing cells with the collagen and gelling reagent, the absorbers placed on top of cultures suck up any excess collagen. The end result is a “contact lens–like structure” with embedded cells that takes about an hour to form. Hussain says that the RAFT System creates a high-density environment—up to 80 milligrams of collagen per milliliter—that more closely mimics the ECM surrounding the body’s cells.

The RAFT System allows researchers to set up various types of cultures—with cells embedded in the matrix, layered on top of the gel matrix for invasion assays, or both. Kits with inserts allow researchers to build 3D cultures that include an air–liquid interface, such as that found in skin or respiratory epithelia. Hussain says researchers have become creative in setting up co-cultures to embed cancer cells in a disc, and then layering immune cells on top to investigate how they infiltrate a tumor.

Geometry matters

Sometimes a researcher might want cells growing in 3D, while still having the ease and convenience of culturing cells in solution. Microcarriers enable the best of both worlds. Global Cell Solutions, a company that provides 3D cell-culturing tools and cell-based assays, makes the Global Eukaryotic Microcarrier (GEM) system to grow cells on the surface of 75 µm–150 µm alginate beads for high-density cell culture. These optically clear spheres can be pipetted like water and contain ferromagnetic particles for magnetic levitation or collection in test tubes. The beads come coated in “five flavors of biomimetic coatings,” namely fibronectin, gelatin, collagen, Matrigel, and polylysine, explains Robin A. Felder, co-chairman of the Charlottesville, Virginia–based firm.

A slurry of GEMs offers the “benefits of a suspension culture, but with the cells growing in an orientation on a biomimetic, porous surface,” says Felder. This means GEM-grown cells, unlike cells grown in 2D, express surface features seen in vivo, such as the copious microvilli on human kidney cells. “Cells like to be on squishy, curved surfaces that they can’t tell apart from surfaces in the body,” he says.

In addition, Felder notes that the cells growing on GEMs are easy to image in systems traditionally looking at 2D cultures, including electron microscopy and fluorescence confocal microscopy. The 3D bead offers a rare look at the sides of cells normally hidden in planar 2D cultures. And the increased surface area of the GEMs allows much higher cell counts to be grown in a compact 50-mL tube. Global Cell Solutions is developing a robotic system that could automatically handle the care and feeding of 32 independent GEM cell cultures, adds Felder.

A gel-free existence

Cells grown in matrices, gels, or on gel microcarriers often must be recovered before other assays can be done. This requires partially or fully dissolving the scaffold, or treating the cells enzymatically to dislodge them—all processes that can perturb cells in unexpected or unwanted ways. And many times, researchers want to see how their favorite cells behave in 3D without any interference from a scaffold. Scaffold-free techniques bring the advantage of not introducing anything that...
Life Science Technologies

cell culture

might influence cells, either chemically or physically. But until recently, scaffold-free 3D culturing was tricky and inconsistent.

In scaffold-free 3D cell culture, the cells find their neighbors, attach to each other, begin making their own native ECM, and often form a sphere of cells. One popular method uses gravity and a literal “hanging drop” of cell culture media. The other way to coax cells into spheroids is to put them on specially coated “ultra-low attachment” plates. Now, technologies have arrived that make growing spheroids simpler, more consistent, and safer than was possible with previous methods—no more fallen hanging drops of precious cells.

Corning’s Spheroid Microplates offer an ultra-low attachment surface and a U-shaped well bottom in 96- and 384-well plates. The black-sided, clear-bottomed plates ensure reproducibility of the location and size of spheroids for automated imaging.

Timothy Spicer says the Corning plates get his facility that much closer to performing drug discovery high-throughput screening (HTS) on 3D-grown cells. He’s the director of Discovery Biology and HTS for the Lead Identification (ID) division of The Scripps Research Institute in Jupiter, Florida, a core facility for all Scripps researchers as well as outside collaborators.

Spicer has been working with Corning to perfect prototype 1,536-well spheroid microplates, the preferred format for automated HTS for miniaturization and cost savings. In a study using the HT-29 colon cancer cell line, Corning and Scripps researchers performed a direct comparison of the cells grown in 2D with the cells grown as spheroids, and screened both types against a unique collection of more than 3,300 known drugs. The 3D screens returned far fewer hits than the 2D screens, meaning far fewer drugs caused the same level of cytotoxicity in the 3D cultures (2).

“We are not far away from the day when we can take patient-derived tumor cells, put them into these [spheroid] plates, run them against compound libraries, and within a matter of days, find the most effective drugs to kill the cancer cells,” says Spicer.

Also operating in the spheroid market, Zurich-based 3D microtissue company InSphero has a two-plate system that makes going from a hanging-drop culture to a microtissue a snap—and it is automated to boot. Randy Strube, director of global marketing, says the more complex the cellular model, the better suited it is to the hanging-drop system, where gravity and self-assembly drive the formation of microtissues in an oxygen-rich environment.

InSphero’s GravityPLUS plates make hanging drops simple, stable, and transferable in a 96-well format. Featuring a unique hourglass channel within each well, the plates hold drops steady and in a way that allows pipetting in additional media or more cells. Once spheroids or 3D microtissues have formed, they can easily be transferred to matching GravityTRAP 96-well plates. The GravityTRAP plates are spheroid plates with a conical, flat-bottomed well and a specialized ledge for pipetting without disturbing the spheroid. The setup allows researchers to develop scaffold-free, complex microtissues in a reproducible, miniaturized way.

Additional dimensions

For scientists who don’t want to spend months developing their own 3D systems, InSphero also supplies prevalidated, assay-ready microtissues directly to researchers in drug discovery and development. InSphero currently produces several varieties of microtissues, focusing on liver models for toxicology, pancreatic islets for diabetes, and tumor–stromal co-culture microtissues for oncology.

Likewise, Lonza’s human primary cells take the guesswork and paperwork out of developing cultures directly from patient samples, saving researchers an average of six months for some cell-type isolations, says Hussain. Researchers who receive cryopreserved or fresh cells from one of 21 cell-type families can simply get their research going, she says.

But the end goal of 3D culturing is not to exactly recapitulate the body’s complexity, says Anseth. To explain, she uses the analogy of flight: “Airplanes don’t fly because they look like birds, but because we understand enough about the mechanics of flight.” Knowing “enough” about a cellular system or process in 3D might be sufficient to intervene when biological processes go awry or to promote healing, she observes.

The next wave in 3D culturing is already underway, with companies designing organ-on-a-chip or body-on-a-chip applications that allow the crosstalk between tissues to be captured, miniaturized, and manipulated in the lab. Studying the growth and modification of 3D structures over time (also known as “4D cell culture”) while adding or subtracting different growth factors will lead to discoveries of how to speed healing or disrupt degeneration.

Hussain says the choices researchers have for growing cells in 3D are like the vast array of cereal boxes in the grocery store, with many options that come in several different flavors. She advises researchers to start with the question they want to answer and work in reverse to figure out the best technology to use: “The question is, what is your specific application and goal for using 3D culture?”

REFERENCES

Kendall Powell is a freelance science writer based in Lafayette, Colorado.

DOI: 10.1126/science.opms.p1700114
Pluripotent Stem Cell Medium

Gibco StemFlex Medium is a new pluripotent stem cell (PSC) medium that tests better than standard media on metrics important to novel stem cell applications. The medium achieves up to twofold-faster stem cell recovery following gene editing, and as much as fivefold improvement in clonal expansion following single-cell passaging in the absence of a ROCK inhibitor. It consistently maintains pluripotency with weekend-free feeding schedules, and can also be used for multiple matrices and passing reagents. With these gains in performance and flexibility, the medium enables progress in areas at the forefront of PSC research, including genome editing, single-cell analysis, and reprogramming.

Thermo Fisher Scientific
For info: 800-955-6288
www.thermofisher.com

Organoid Progenitor Cells

Cultrex Organoid Progenitor Cells, derived from normal, healthy mouse small intestine tissue, are now available and suitable for gene editing. These cells can be expanded using reduced growth factor (RGF) BME-R1, and may be induced to express tissue-specific markers under differentiating conditions. Cultrex cells will be of particular interest to the large number of leading research groups worldwide that specialize in drug screening applications and use BME 2 organoid matrices. These cells are also ideally suited for use in common gene-editing techniques such as CRISPR/Cas9, for developing models for infectious disease and cancer, and for studying the normal intestine. Organoid 3D cultures are extracted directly from living tissues similar to primary cultures. Instead of using an artificial, tissue culture–treated plastic environment, stem cell populations are maintained using an extracellular matrix environment under nondifferentiating conditions. When subjected to differentiating conditions, these organoids exhibit expression of tissue-specific genes and differentiation of stem cells into tissue-specific architecture.

AMS Biotechnology
For info: +44-(0)-1235-828200
www.amsbio.com/organoids.aspx

Microfluidic Platform

The CellASIC ONIX2 Microfluidic System converts laboratory microscopes into powerful tools for live cell imaging, to perform in-depth analysis of cellular mechanisms and behavior. It allows precise control and manipulation of cell culture environments, and provides constant, stable imaging conditions while preserving the health of cells. The all-in-one platform consists of an extracellular matrix environment for nondifferentiating conditions. This system provides a new level of reliability to researchers studying long-term growth, movement, signaling, and cellular interactions and responses to environmental stimuli, including hypoxia and cancer cell behavior. Its high-resolution capabilities are ideal for laboratories interested in producing time-lapse cell culture videos or developing cell-based assays and optimizing parameters for short- or long-term cultures.

EMD Millipore
For info: 800-645-5476
www.emdmillipore.com

3D Microscope

The Mesolens microscope makes possible for the first time the imaging of relatively large biomedically important specimens such as embryos, brain areas, or tumors, with full 3D recording of many thousands of cells. The microscope’s innovative design includes a novel apochromatic lens with an aperture-to-magnification ratio far in excess of conventional lenses used by other manufacturers. This low-magnification lens, with its exceptionally high numerical aperture, can image an entire specimen while retaining subcellular detail, thus removing the need for image stitching. The focus motor enables the Mesolens to provide highly accurate imaging in the z-axis. The leading-edge repeatability and precision of the microscope stage ensures that the correct position of the specimen is obtained and maintained throughout the entire imaging process.

Prior Scientific
For info: +44-(0)-1223-881711
www.prior-scientific.co.uk

Live Cell Imaging System

The BioSpa Live Cell Imaging System brings together the BioSpa Automated Incubator and the Cytation 5 Cell Imaging Multi-Mode Reader to fully automate live cell imaging and analysis. Plate washing and reagent dispensing can be added to the system to automate the entire process, from sample prep through image analysis. Cytation 5 provides high-quality, powerful, data-rich image capture, processing, and analysis of live cell assays, up to 60x. BioSpa’s temperature, gas-, and humidity-controlled environment houses and protects cells in up to eight microplates or other labware. The robotic gripper moves the plate from the incubator drawers to Cytation 5 for kinetic imaging and analysis in Gen5 software. BioSpa’s software seamlessly integrates imaging and liquid-handling protocols in an easy scheduling interface, and provides reporting and 24/7 monitoring of all processes. The BioSpa System has a compact footprint for use on benchtops and in biosafety cabinets.

BioTek Instruments
For info: 888-451-5171
www.biotek.com/products/imaging/biospa_system.html

Live Cell Analysis

The IncuCyte ZOOM System enables observation and quantitation of cell behavior over time by automatically gathering and analyzing images around the clock within a standard incubator. Whether it is for simple cell-proliferation assays or more advanced stem cell differentiation biology, our live cell, nonperturbing imaging approach yields kinetic data and insight far beyond that achievable with conventional endpoint or nonimage based approaches. The system consists of a microscope gantry that resides in the cell incubator, and a networked external-controller hard drive that gathers and processes image data. Different microscope objectives (4x, 10x, 20x) can be housed within each system and readily interchanged by the user. Each IncuCyte ZOOM houses multiple T-flasks or microtiter plates (up to six) and can acquire >2000 images per hour. The platform supports high-definition phase contrast, as well as two-color (green and red) fluorescence automated-imaging modes. The IncuCyte ZOOM is controlled from the office or home by intuitive, easy-to-use desktop software.

Essen Bioscience
For info: +44-(0)-1707-358688

Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and governmental organizations are featured in this space. Emphasis is given to products and materials that, due to their novel nature or to their utility, are likely to find wide application. For more information about any item, circle the corresponding number on the Reader Service Card. Additional information may be obtained by email at "scicareers@aaas.org".

New products: cell culture

Page dimensions: 594.0x756.0

FAM Bioscience
www.fambioscience.com

BME 2 Organoid
www.biotek.com/products/biosispa.html
In extraordinary times, the American Association for the Advancement of Science (AAAS) must come together to advance science with particular force. This conviction is in the organization’s DNA. In 1851, AAAS’ third president Alexander Dallas Bache said, “While science is without organization, it is without power.” Now, as then, we must work together with renewed energy across the full spectrum of the scientific enterprise — and across the sectors that advance it.

The scientific enterprise embraces a broad spectrum of activities, from fundamental research to advanced applications. Academia, government, and industry all perform critical roles in moving ideas into innovations. The demands of the twenty-first century, including improved access to sufficient food, clean water, sustainable energy, and health care, can only be met by accelerating discovery and the translation of discovery into applications. Robust, sustained investments across the full spectrum of the scientific enterprise are essential for developing products that improve the human condition and drive economic growth. We can speed progress by amplifying collaboration across sectors and disciplines. What new avenues for interaction between basic and applied research might be explored? How can we encourage broader participation from every sector and demographic to meet today’s needs and to help invent the future?

Call for Session Proposals
Session proposals for the 2018 AAAS Annual Meeting are now being solicited.
Deadline for submission: April 20, 2017

aaas.org/meetings
Meet Our Discovery Squad

Learn more | bio-techne.com/immunoassays