Migrate to Monarch®.

Environmentally-friendly Nucleic Acid Purification Kits from New England Biolabs

Want to feel good about your choice in DNA purification? With our fast and reliable Monarch Nucleic Acid Purification Kits, you can achieve optimal purification while creating less waste. Available for plasmid minipreps, DNA gel extraction and enzymatic cleanup (including PCR), our products use up to 44% less plastic and are packaged using responsibly-sourced, recyclable materials. Make the change and migrate to Monarch today.

“These kits might be the best I have used for the price. The best part is that it uses less plastic for production!! Thank you for caring about our environmental impacts, NEB!!!”

– NEB customer

Request your free sample at www.NEBMonarch.com
We can’t simply hope that reason will prevail, we have to stand together and act.

Join the American Association for the Advancement of Science.
2016 Winner
Gilad Evrony, M.D., Ph.D.
Mount Sinai Hospital
For research on technologies to sequence and analyze the genomes of single cells from the human brain

Call for Entries

Eppendorf & Science Prize for Neurobiology
The annual Eppendorf & Science Prize for Neurobiology is an international award which honors young scientists for their outstanding contributions to neurobiological research based on methods of molecular and cell biology. The winner and finalists are selected by a committee of independent scientists, chaired by Science’s Senior Editor, Dr. Peter Stern. To be eligible, you must be 35 years of age or younger.

You could be next to win this prize and to receive
> Prize money of US$25,000
> Publication of your work in Science
> Full support to attend the Prize Ceremony held in conjunction with the Annual Meeting of the Society for Neuroscience in the USA
> An invitation to visit Eppendorf in Hamburg, Germany

It’s easy to apply!
Learn more at:

www.eppendorf.com/prize
Be Among the First to Publish in *Science Robotics*

Science Robotics is a unique journal created to help advance the research and development of robotics for all environments. *Science Robotics* will provide a much-needed central forum to share the latest technological discoveries and to discuss the field’s critical issues.
Big data, big picture:
Metabolomics meets systems biology

Metabolomics—the study of the collection of an organism’s metabolites—provides a molecular measurement of phenotype, or the characteristics resulting from the genotype’s interaction with the environment. Using a range of analytical tools to scale the mountains of data collected, including molecular detection and bioinformatics, scientists use metabolomics to understand systems biology, which is the complete computational analysis and modeling of an organism and its well-being.

By Mike May

A forgotten fourth category of molecular biology might be the one that teaches us the most about phenotypes. We’ve focused for decades on a molecular trio: DNA makes RNA makes proteins. And now, many scientists are mindful of an additional group: metabolites, which are made by proteins at work in an organism’s biochemical pathways. We hear so much about genes and genotypes, but—important as they are—we want to explore what happens when these genes and environmental elements interact. We want to find the molecular phenotypes that distinguish health from disease, and that’s what metabolomics provides.

Undoubtedly, systems biologists—those looking at interacting elements of life science—want to correlate the metabolome with the genome. “Metabolomics can’t really function on its own without the genome sequence,” says Jonas Korlach, chief scientific officer at Pacific Biosciences, in Menlo Park, California, a company that specializes in genomics analyses. “Once you find metabolites and want to analyze them for new antibiotics or new pathways, you need the genome information to identify the enzymes and clone the genes.”

Robert Trengove, director of the Separation Science and Metabolomics Laboratory at Murdoch University in Western Australia, agrees. Says Trengove, the impact of metabolomics on systems biology is still in its infancy, but he sees positive advances underway, and the key is teamwork. “We’ve got people who are very good at doing informatics, processing ‘omics,” he says. “But few people have a solid understanding across all the ‘omics, including lipidomics and epigenetics.”

Trengrove’s group already teams up with others, collecting blood samples from an intensive care unit to create metabolic profiles of patients. “This way,” he says, “we can start to evaluate the use of various compounds as biomarkers and indicators of patient recovery.” To really know what’s going on, the biomarker panels must be correlated with proteomics and genomics, but that work is just getting started.

Nonetheless, systems biology has already turned biology on its head. Traditionally, biology has broken down an organism or cell into its subparts. Now, systems biology appears to embrace Aristotle’s view that “the whole is greater than the sum of its parts,” and is borrowing from various fields, including metabolomics. Tools to handle collections of data from these fields—collectively known as “big data”—are now emerging.

Thinking twice about data

Overall, metabolomics creates a numerical challenge. “Metabolomics is now often used to accompany large genomic cohort studies from biobanks, to correlate genotype and genomic variants with specific phenotypes, to complement nutritional studies monitoring food components or endogenous metabolites, or to support measurements in epidemiology studies,” says Andreas Huhmer, director of proteomics and metabolomics marketing at Thermo Fisher Scientific, headquartered in Waltham, Massachusetts. And that creates a lot of data. More than 7,500 metabolites have been detected in humans, and only about 2,500 of them come directly from the person; the others come from other sources, including foods and drugs that the person ingested.

Upcoming features
Genomics: Microbiome—May 19 ■ Proteomics: Antibody validation—September 15 ■ Tissue analysis: Liquid tumor biopsies—October 20
Numerically, we’re probably just at the starting point. As Huhmer says, “More metabolites are expected to be identified in the future, particularly with increased efforts in understanding metabolites and microbiome-associated metabolism in the gut.” Bowel microbiota play a significant role in metabolic profiles, providing a treasure trove of information on the impact of lifestyle and diet on chronic and acute diseases such as type 2 diabetes and obesity.

Two data repositories for metabolomics—the Metabolomics Workbench and MetaboLights—promise to give scientists more data to analyze as teams, enabling them to share data across the globe.

Leveraging lipidomics

Lipidomics is another integral piece of the metabolomics puzzle, but it has been a neglected area of ’omics, because few researchers explore these molecules—at least compared to their investigation of DNA, RNA, and proteins. However, lipids provide a useful tool for systems biology, because “they can be quantified, which tells us about the state of a cell or tissue,” explains Kai Simons, CEO of Lipotype in Dresden, Germany.

The company’s Lipotype Shotgun Lipidomics Technology provides that quantification. This technique performs mass spectrometry on a whole extract, rather than separating it first by liquid chromatography. With only one microliter of blood, this technique provides what Simons calls “absolute quantification—we can identify up to 2,300 lipids.” Scientists can send a sample to Lipotype and have a total lipid analysis completed in just two weeks. If desired, the company’s software is available to researchers who want to look through the data. Still, biologists need to collect even more data on various metabolites and determine what they do. In fact, learning the function of more metabolites could make the biggest impact on understanding complete biological systems.

Figuring out function

Even if we could detect all the proteins and metabolites in any biological matrix, says Jose Castro-Perez, director of health sciences marketing at Waters in Milford, Massachusetts, “we’d know what only a small percentage of them do.” Scientists need ways to both detect metabolites and understand their biological functions. That requires analytical and bioinformatics tools to conduct disease or therapeutic association and pathway analysis that combines various forms of ’omics data.

For that, Waters developed its SONAR software, a data acquisition mode that works with the company’s Xevo G2-XS QTof, which provides quadrupole time-of-flight (QToF) mass spectrometry. SONAR can catalog a complete sample with precursor and fragment ion spectra from a data independent analysis (DIA) experiment in a single sample injection, giving researchers quantitative and qualitative information about the proteins or metabolites. “This new DIA acquisition mode is more advanced than other DIA approaches, because it provides faster and more selective data acquisition for complex samples,” Castro-Perez says. “Furthermore, this new approach allows for improved reliability of database library searches and quantitation accuracy.” The Xevo G2-XS QToF can be integrated with Waters’ chromatographic tools, such as ultra-performance liquid chromatography, for high throughput.

“Generating high-quality data is important, but ultimately you need to be able to go from raw data to meaningful and actionable biological information,” says Castro-Perez. To synthesize the information and simplify the data-handling and processing workflow, Waters developed its Symphony software, a client/server application that allows the automation of one, or several, data-handling or processing functions in a sequence. This tool can even initiate data processing immediately following an instrument run and complete it without user intervention—features that are very important in large-scale studies.

Combining complementary methods

Despite all the advances in storing and analyzing data, scientists are still confronting significant obstacles in studying the metabolome. “One bottleneck in nontargeted workflows is the identification of unknown compounds,” says Aiko Barsch, market manager for metabolomics at Bruker Daltonics, based in Bremen, Germany. “This is where MS and NMR [mass spectrometry and nuclear magnetic resonance] both have advantages.”

For example, high-resolution, accurate-mass (HRAM) MS can reveal the elemental composition of unknown compounds. “MS has come a long way, and systems that provide ‘extreme resolution’ enable researchers to read out elemental compositions from the so-called ‘isotopic fine structure,’” says Barsch, “but if a real unknown—something not in a database—appears in a sample, then you need de novo structural elucidation capabilities, and that’s a key job of NMR.” So, MS and NMR can be used together, as complementary techniques in metabolomics.

To dig even deeper into complex samples, researchers often combine MS with liquid or gas chromatography (LC/HRAM-MS or GC/HRAM-MS, respectively). “This helps to pinpoint characteristic metabolites,” Barsch explains, “because the separation combined with high-resolution detection zeros in on specific components of a sample.”

Advances in NMR also help. Today’s platforms include standard operating procedures that allow scientists to transport a...
Featuring participants

<table>
<thead>
<tr>
<th>Agilent Technologies</th>
<th>www.agilent.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker Daltonics</td>
<td>www.bruker.com</td>
</tr>
<tr>
<td>Helmholtz Zentrum München</td>
<td>www.helmholtz-muenchen.de/en</td>
</tr>
<tr>
<td>Lipotype</td>
<td>www.lipotype.com</td>
</tr>
<tr>
<td>Pacific Biosciences</td>
<td>www.pacb.com</td>
</tr>
<tr>
<td>Scripps Research Institute</td>
<td>www.scripps.edu</td>
</tr>
<tr>
<td>Thermo Fisher Scientific</td>
<td>www.thermofisher.com</td>
</tr>
<tr>
<td>Waters</td>
<td>www.waters.com</td>
</tr>
</tbody>
</table>

Protocol from one platform to another. The growing level of teamwork in metabolomics makes these features crucial to scientists collaborating internationally, because they seek consistency in NMR data coming out of different labs.

Although metabolomics researchers use both MS and NMR, Steve Fischer, marketing director for metabolomics and proteomics at Agilent Technologies in Santa Clara, California, says, “The trend strongly favors mass-spectrometry solutions, because of instrument cost, breadth of measurement, and sensitivity.”

Given the wide range of metabolites that can be detected and the overlap in their masses, combining chromatography with MS provides separation and deeper analysis of a sample. “Broadly speaking, an LC/MS system can measure more things than a GC/MS system,” says Fischer. Some samples cannot be volatilized easily, which is required for GC. Yet, “both systems provide mass-spectral information that can be used to track and eventually identify what metabolite has been detected and the abundance of that metabolite,” he says. By comparing samples, this information reveals which metabolites are changing and by how much.

Analyzing those changes requires specialized software. In 2016, Agilent released VistaFlux, which performs stable-label isotope tracking. Since various biological routes can produce a metabolite, “the only way to know what route produced a given metabolite is by tracking the consumption of its tracer through intermediate metabolites to its ultimate fate,” Fischer explains. “VistaFlux shortens data analysis from weeks of manual data processing to hours using this software, while increasing the number of metabolites that can be examined.”

For a completely dedicated metabolomics solution, scientists can combine Agilent’s 1290 UHPLC and 6470 Triple Quadrupole LC/MS system with the Agilent Metabolomics dMRM Database and Method—this platform can measure 217 metabolites.

Other companies provide scientists with additional options in analytics. For example, Thermo Fisher Scientific’s HRAM Orbitrap-based MS systems can detect as many as 1,000 metabolites from several microliters of human plasma in less than an hour. “For high-throughput, untargeted analyses,” says Huhmer, “the Thermo Scientific Q Exactive mass spectrometers, combined with the breadth of chromatographic separations—including LC, [on chromatography], and GC systems—detect and resolve chemically diverse compounds in the metabolome.” This technology can be combined with Thermo Scientific Compound Discoverer software, which can confidently turn data into meaningful results, says Huhmer.

Synthesizing on a systems level

To understand the systems biology of metabolites—or how they work together—scientists must connect them to pathways, which is precisely the purpose of the cloud-based XCMS Online platform. “You can take data from an LC/MS run, and—in one click—pull out the pathways that it predicts are being dysregulated,” explains XCMS Online’s creator Gary Siuzdak, professor and director of the Scripps Center for Metabolomics at the Scripps Research Institute in La Jolla, California. “It can also integrate proteomic and genomic data in the analysis.” This capability provides several levels of validation.

Most important, XCMS Online makes it easy to explore the results. For example, it creates a Pathway Cloud Plot, an interactive graph of the metabolites grouped by pathways. Clicking on a pathway bubble provides the name of the pathway, the metabolites that are associated with it and those that are not, related statistics, and more.

Over 14,000 scientists already use XCMS Online, which allows them to run analyses and share the results, because it’s cloud-based technology. “We’ve seen people from every continent—even Antarctica—using this,” Siuzdak says.

As analytical devices continue to improve and bioinformatics systems get more powerful, yet easier to use, systems biology approaches will stretch across more areas. “There is a strong movement in systems biology to become more translational,” says Fabian Theis, director of the Institute of Computational Biology at the Helmholtz Zentrum München, in Germany, “and medical research is generating lots of ‘omics measurements.”

Metabolites fluctuate over the course of a day, and blood makes a good sample for tracking variation. Looking at blood samples from large patient cohorts proves especially interesting. “From this,” says Theis, “we can combine various ‘omics, build networks, and then correlate them with population cohorts or clinical trials.”

The Helmholtz Zentrum München specializes in such big cohorts. They measured metabolites in a few thousand patients with MS, then matched the concentrations of metabolites with single nucleotide polymorphisms (SNPs). “You usually find dozens or hundreds of metabolites associated with SNPs, and if you correlate a SNP with the ratio of two metabolites—those next to each other in a biochemical pathway, or reaction—you can see a SNP’s effect on this reaction,” Theis explains. “For example, we can choose healthy and disease groups or simpler phenotypes, such as males versus females, and ask if we find a metabolic footprint of this variable.”

The data do not provide easily interpretable results, however. Many of the associations come from indirect effects, because one reaction in a pathway can drive long-reaching impacts on other reactions. Using computational and statistical tools, Theis and his colleagues link two metabolites after correcting for the influence of all others. “Then, the correlations expose clear pathways,” Theis says, “and you can then compare across diseases.”

As scientists and manufacturers develop more tools to analyze metabolomics in more detail, we learn more about biological systems—how they function in healthy and disease states, as well as how they change over time and in different environments. The key to learning even more revolves around collecting larger datasets—and sharing them for analysis with scientists around the world.

Mike May is a freelance writer and editor based in Florida.

DOI: 10.1126/science.opms.p1700115
Epigenetic Analysis Tools
The TrueMethyl Whole Genome (TMWG) integrated workflow system for processing DNA samples includes all-in-one reagents for sample conversion, library creation, and indexing, combined with bioinformatics tools to enable accurate DNA modification analysis through next-generation sequencing methods. The TMWG kit incorporates Cambridge Epigenetix’s TrueMethyl oxidative bisulfite (oxBS) technology, which allows researchers to accurately quantify different DNA modifications at single-base resolution, as well as proprietary library preparation methods designed to overcome the limitations of traditional bisulfite library construction, and to improve the yield and quality of epigenetic data. The bioinformatics tools comprise a series of scripts for quality control analysis and biological analysis of the resultant sequencing data. TMWG allows customers to access the power of whole-genome epigenetic information in an integrated, cost-effective solution combining state-of-the-art sample preparation and DNA sequence analysis.

Cambridge Epigenetix
For info: +44-(0)-1223-804260
www.cambridge-epigenetix.com

Fatty Acid Oxidation Kit
AMS Biotechnology has introduced the MitoXpress Xtra Fatty Acid Oxidation (FAO) kit to facilitate convenient measurement of FAO-driven respiration. FAO is the primary metabolic pathway in a variety of tissues, and is particularly important during periods of glucose deprivation. In tissues such as liver and skeletal muscle, FAO can provide over 75% of cellular adenosine triphosphate, while in cardiac tissue it can be responsible for up to 90%. It is also acknowledged as a key factor in cancer metabolism and drug-induced microstatisis. The MitoXpress Xtra FAO kit is designed for use with the MitoXpress Xtra HS–Oxygen Consumption Assay, and contains the 18-carbon unsaturated fatty acid oleate as substrate, supplied as a 2:1 bovine serum albumin conjugate. The kit also contains a buffer tablet and L-carnitine for convenient preparation of measurement media, and two FAO modulators, etomoxir and FCCP.

AMS Biotechnology
For info: +44-(0)-1235-828200
www.amsbio.com

Viscometer
The Fluidicam RHEO viscometer represents a new standard of fully automated rheology measurement. It uses the well-defined microfluidic coflow principle for measuring viscosity. Unlike conventional rotational rheometers, the Fluidicam can run defined shear sweeps at shear rates as high as 10^5 s$^{-1}$ with low-viscosity fluids of 0.1 centipoise (cP) up to 200,000 cP. This low-viscosity window is especially challenging for conventional rheometers, whose readings can be affected by factors such as low torque, turbulent flow, and surface tension. Sample volumes are as small as 500μL, which is ideal when measuring blood, proteins, and other biofluids. The microfluidic chip dimensions ensure extreme accuracy and a repeatability of 1%. Access to shear rates and temperature sweeps is available in a single click, without the need for calibration, geometries, or chip sensors.

Typical applications include pharmaceuticals (proteins, vaccines, eyedrops, etc.) petrochemicals, inkjet inks, food analysis, personal care, and fine chemistry.

Fullbrook Systems
For info: +44-(0)-1442-8767
www.fullbrooksystems.co.uk

Next-Generation Transcriptome Profiling Assays
Researchers looking to quickly identify expression biomarkers using highly challenging clinical research samples can now use Thermo Fisher Scientific’s Clariom Pico assays—the next-generation family of transcriptome profiling tools. The Clariom brand of assays (Clariom D Pico and Clariom S Pico) include the most current content curated from the largest number of public-sequence databases, including RefSeq, NONCODE, Ensembl, Vega, IncRNAWiki, and RNAcentral, among several others. Clariom D Pico assays allow discovery of coding and noncoding genes, exons, and splicing events, including rare transcripts, expanding the potential for finding novel biomarkers missed by alternative techniques. Clariom S Pico assays enable scientists to identify important expression changes in genes and pathways. Clariom Pico assays can extract data from as little as 100 pg of total RNA, from common and challenging sample types (including formalin-fixed, paraffin-embedded tissues and whole blood) without the need for globin messenger RNA reduction or ribosomal RNA removal.

Thermo Fisher Scientific
For info: 800-955-6288
http://go.affymetrix.com/clairiom

Exosome Isolation Kit
The MagCapture Exosome Isolation Kit PS recover high-yield, high-purity exosomes. Exosomes and other extracellular vesicles (EVs) are small membrane vesicles containing protein, messenger RNA, microRNA, DNA, and lipids, which are secreted by various cells and are stable in body fluids including blood, saliva, urine, cerebrospinal fluid, and breast milk. These EVs have been recognized as messengers of cell-to-cell communication and as biomarkers for various diseases. Conventional isolation methods—ultracentrifugation, affinity purification using antibodies to surface antigens, and precipitation with polymer reagents—are not fully satisfactory for recovery efficiency, purity, and operability. The kit adopts a novel purification method, using magnetic beads and phosphatidylinerine-binding protein to isolate exosomes and other EVs from cell-culture medium and body fluids by a normal microcentrifuge. The isolated intact exosomes and other EVs can be used in electron microscope analysis; nanoparticle tracking analysis; administration of EVs; and analysis of proteins, lipids, or nucleic acids.

Wako Chemicals USA
For info: 877-714-1920
www.wako-chem.co.jp/english

Biomolecular Imager
Do you need to do simple gel imaging or red-green-blue (RGB) fluorescent Western blot detection, but also want near infrared (NIR) fluorescence or phosphor imaging? GE’s Amersham Typhoon is a next-generation biomolecular imager that meets all of your needs in one instrument. It offers an upgradeable laser-scanner format that is completely customizable for your specific research needs. Typhoon’s laser scanner enables you to generate high-quality data through linearity of signal response, quantitative accuracy, and extremely low detection limits (as low as 3 pg). Typhoon supports phosphor imaging, 2D difference gel electrophoresis imaging, and RGB and NIR fluorescence, as well as sensitive and accurate quantitation of proteins, nucleic acids, and other biomolecules.

GE Healthcare Life Sciences
For info: 800-526-3593
www.gelifesciences.com
CALL FOR PAPERS

BROADER IMPACT
B11 Community College and University Partnerships as Catalysts for Promoting Materials Science Education
B12 Materials Innovation for Sustainable Agriculture and Energy

BIOMATERIALS AND SOFT MATERIALS
BM1 Multiscale Mechanobiology and Biomechanics—Theory, Experiments, Computations
BM2 Multiphase Fluids for Materials Science—Droplets, Bubbles and Emulsions
BM3 Biological and Bioinspired Materials for Photonics and Electronics—From Living Organisms to Devices
BM4 Biomaterials for Regenerative Engineering
BM5 Polymer Gels in Materials Science—3D/4D Printing, Fundamentals and Applications
BM6 2D Nanomaterials in Health Care
BM7 Emerging Materials and Devices for Engineering Biological Function and Dynamics
BM8 Materials Design for Neural Interfaces
BM9 Stretchable Bioelectronics—From Sensor Skins to Implants and Soft Robots
BM10 Bioinspired Interfacial Materials with Superwettability
BM11 Modeling, Characterization, Fabrication and Applications of Advanced Biopolymers—Where Form Meets Function
BM12 Biomolecular Self-Assembly for Materials Design

ELECTRONICS, MAGNETICS AND PHOTONICS
EM1 Organic Semiconductors—Surface, Interface, Bulk Doping and Charge Transport
EM2 Multiferroics and Magnetoelectrics
EM3 Novel Materials and Architectures for Plasmonics—From the Ultraviolet to the Terahertz
EM4 Wide- and Ultra-Wide-Bandgap Materials and Devices
EM5 Oxide Interfaces—Lattice and Electronic Defect Interactions
EM6 Diamond Electronics, Sensors and Biotechnology—Fundamentals to Applications
EM7 Materials, Devices and Architectures for Neuromorphic Engineering and Brain-Inspired Computing
EM8 Emerging Materials for Quantum Information
EM9 Electronic and Ionic Dynamics at Solid-Liquid Interfaces
EM10 Solution-Processed Inorganics for Electronic and Photonic Device Applications

ENERGY AND SUSTAINABILITY
ES1 Perovskite Materials and Devices—Progress and Challenges
ES2 On the Way to Sustainable Solar Fuels—New Concepts, Materials and System Integration
ES3 Earth Abundant Metal Oxides, Sulphides and Selenides for Energy Systems and Devices
ES4 Interfaces in Electrochemical Energy Storage
ES5 Materials and Design for Resilient Energy Storage
ES6 Alkali Solid Electrolytes and Solid-State Batteries
ES7 Chromogenic Materials and Devices
ES8 Advanced Nuclear Materials—Design, Development and Deployment
ES9 Thermal Energy—Transfer, Conversion and Storage
ES10 Materials Efficiency to Enable a Circular Materials Economy
ES11 Silicon for Photovoltaics

NANOMATERIALS
NM1 Carbon Quantum Dots—Emerging Science and Technology
NM2 Anisotropic Carbon Nanomaterials—Frontiers in Basic and Applied Research
NM3 Progress in Developing and Applications of Functional One-Dimensional Nanostructures
NM4 Atomically Thin, Layered and 2D Non-Carbon Materials and Systems
NM5 Nanomaterials, Nanoparticles and Nanostructures Produced by Plasmas—Synthesis, Characterization and Applications
NM6 Semiconductor Nanocrystals, Plasmonic Nanoparticles and Metal-Hybrid Structures
NM7 Nanostructure-Based Optical Bioprobes—Advances, Trends and Challenges in Optical and Multimodal Bioimaging and Sensing
NM8 Defect-Induced Phenomena and New States of Matter at the Nanoscale

PROCESSING AND MANUFACTURING
PM1 Explore New Frontiers in Materials Design Using Plasmas—Synthesis, Processing and Characterization
PM2 Advances and Upcoming Research Strategies in Reactive Materials
PM3 Interfaces and Interface Engineering in Inorganic Materials
PM4 Micro-Assembly Technologies—Fundamentals to Applications

THEORY, CHARACTERIZATION AND MODELING
TC1 Multifunctional and Multifrequency Scanning Probe Microscopy
TC2 In Situ Studies of Materials Transformations
TC3 Emerging Prospects in Ion Beam Technology and Applications
TC4 Advanced Atomistic Simulations in Materials Science
TC5 Uncertainty Quantification in Multiscale Materials Simulation
TC6 Mechanical Behavior at the Micro and Nanoscale—Bridging Between Computer Simulations and Experiments
TC7 Design, Control and Advanced Characterization of Functional Defects in Materials

Meeting Chairs
Ilke Arslan Pacific Northwest National Laboratory
Jason A. Burdick University of Pennsylvania
Tao Deng Shanghai Jiao Tong University
James B. Hannon IBM T.J. Watson Research Center
Sanjay Mathur University of Cologne

www.mrs.org/fall2017

2017 iMatSci Innovator Showcase
CALL FOR EARLY-STAGE STARTUPS
Submission Site Opens: June 1, 2017
www.mrs.org/imatsci
Meet Our Discovery Squad

Wes™

Milo™

Ella

Luminex® 100/200™

MAGPIX®

FLEXMAP 3D®

Learn more | bio-techne.com/immunoassays