However, mechanisms are also needed to block expression of genes that specify other cell lineages. Kim et al. identified such a mechanism in the Drosophila male germ line. A multiple–zinc finger protein and a chromatin remodeler were found to act together to block transcription from cryptic promoters. These factors prevented aberrant gene expression and enabled proper differentiation in the adult sperm stem cell lineage. —BAP

SCIENCE

this issue p. 717

NITROGEN CYCLE

From air to shining sea

Nitrogen is an essential nutrient for phytoplankton growth. Nitrogen is primarily supplied to the surface ocean by mixing from below. However, as fertilizer use and combustion of fossil fuels rise, the atmosphere is expected to become an increasingly important source. Ren et al. measured nitrogen isotopes in organic matter from a South China Sea coral (see the Perspective by Boyle). Their findings suggest that atmospheric deposition of anthropogenic nitrogen began right at the end of the 20th century. This pathway now supplies nearly one quarter of the annual nitrogen input to the surface ocean in this region. —HJS

SCI. IMmunol. 2, eaam7341 (2017).

NEUROSCIENCE

A brain region for social cognition

Monkeys recognize social interactions and their meanings quickly and effortlessly. Little is known about the neural circuitry that underlies this understanding. Sliwa and Freiwald scanned monkey brains as the monkeys watched static or moving stimuli. A subset of brain areas was exclusively active during monkey–monkey interactions, as opposed to physical interactions between two objects. This network shares some of its components with the monkey mirror neuron system mapped previously by others and with a possible homolog of the human network involved in the theory of mind. —PRS

SCI. IMmunol. 2, eaam7341 (2017).

REPRODUCTIVE BIOLOGY

Why antioxidants do not prevent preeclampsia

Preeclampsia impairs fetal growth and can damage maternal organs. Reactive oxygen species (ROS) have been proposed to increase the risk of preeclampsia by blocking blood vessel formation (angiogenesis) in the placenta. However, using a mouse model of preeclampsia, Nezu et al. found that decreasing ROS levels led to reduced placental angiogenesis, fetal growth, and maternal survival. In contrast, increased ROS levels resulted in greater placental angiogenesis and improved fetal and maternal outcomes. These results help to explain why antioxidants have been ineffective at preventing preeclampsia in clinical trials. —WW

HIV

Taking HIV to the gut

Antiretroviral therapy (ART) effectively limits HIV replication. Nevertheless, HIV*+* individuals need to be medicated for life because ART withdrawal results in rebound of persistent virus. One emerging approach to target HIV is an antibody against integrin α4β7. Integrin α4β7 is a receptor that facilitates homing of CD4*+* T cells to the gut, a key site for HIV persistence. Guzzo et al. found that integrin α4β7 is incorporated into the HIV envelope, suggesting that antibody treatment may directly interfere with the ability of HIV to home to intestinal tissues. Their results change our perception of the role of integrin α4β7, a promising therapeutic target in HIV pathogenesis. —AB

DEVELOPMENT

Mom tells virus what to do

Mother’s directions must be followed, even in the earliest stage of embryo development. The maternal genome is read up until a phase called the maternal-to-zygotic transition. At this point, which corresponds to the two-cell stage in mice, the embryonic genome takes over. Using single-cell analyses, Huang et al. examined the function of the maternal factor Stella. Widespread transcription changes result when Stella is eliminated. In particular, endogenous retroviruses such as MuERV-L that are normally active in the early embryo display impaired expression when Stella is knocked down in vivo. Hence, the normal activity of ancient viruses must be properly turned on for transitioning...
from maternal to zygotic control in development. —BAP

METABOLIC DISEASE
Genes and BMI conspire to make fatty liver
Nonalcoholic fatty liver disease (NAFLD) is estimated to affect 20% of the world’s population. NAFLD begins with an abnormal buildup of fat in the liver that is “clinically silent.” In a subset of individuals, NAFLD progresses to liver inflammation, cirrhosis, and cancer. Identifying which individuals will progress is a major goal of current research. Stender et al. take a step toward this goal by studying gene-environment interactions. They find that high BMI (body mass index), a well-known risk factor for NAFLD, amplifies the effects of certain genetic risk factors. Obese individuals carrying a specific allele of the PNPLA3 gene, for example, have nearly a sixfold greater risk of developing cirrhosis than obese individuals carrying a different allele. —PAK
Nat. Genet. 10.1038/ng.3855 (2017).

MICROBIOTA
Mutualists endow certain appetites
Life span and reproductive success can depend on controlling dietary protein intake. Yet the importance of gut microbial symbionts in appetite control is not understood. Leitão-Gonçalves et al. used the fruity fly, Drosophila, to test what influence their microbiota might have on food choice. Fruit flies like sugar, but after they have mated, they prefer to eat yeast to gain essential amino acids for egg-making. By knocking out the phenylalanine hydroxylase gene, flies can be duped into sensing that tyrosine is an essential amino acid. If tyrosine is missing from a chemically defined diet, the engineered flies’ fecundity falls and, if given the choice, they will voraciously eat yeast to compensate for the missing nutrient. If particular live microbiota species (Acetobacter pomorum and lactobacilli) are introduced into the food of the engineered flies, they lose their taste for yeast and resume egg-laying. Unexpectedly, the microbiota do not seem to directly provide a compensatory source of the missing amino acid. The precise mechanism for the protective effect of the microbiota remains elusive. —CA

QUANTUM OPTICS
A game of quantum catch
Realization of a quantum communication network or quantum internet will depend on the ability to successfully transfer quantum states between nodes of the network. Photons are expected to be the carriers of that information, but scattering losses and a mismatch between sender and receiver nodes can limit their utility. By tuning the energy levels of a receiver dot and introducing filters that suppress noise, Delteil et al. demonstrate the transfer of single photons from one quantum dot to another 5 m away. Their method allows the receiver dot to signal absorption of a single photon without compromising the actual quantum state, thereby presenting a possible route for developing a larger quantum network. —ISO

EDUCATION
Research experience is not just for students
The benefits of authentic research experiences for undergraduate students are well documented, but how do research advisors benefit from having undergraduate students in their lab? Hayward et al. interviewed 30 research advisors at various career stages about their motivation for supporting undergraduate research. Responses indicated that a blend of instrumental and intrinsic motivation influenced most advisors, whereas a small group of advisors, all in the early stages of their careers, reported only instrumental motivation. These differences in motivations likely affect the way that advisors work with students and may serve as the starting point for designing new methods for training, and retaining, high-quality research advisors. —MM

OCEAN ECOLOGY
Expanding toxic algal blooms
Ocean temperatures in the North Atlantic and North Pacific oceans have increased in recent decades, particularly in coastal areas. This has been associated with increased algal blooms and, where these blooms include algal species that produce biofouling, the potential for increases in cases of paralytic and diarrhetic shellfish poisoning. Gobler et al. used high-resolution records of sea surface temperature from 1982 to 2016 and temperature-dependent growth rates of two toxic algal species to create models of harmful algal blooms. These models were validated in areas of the North Atlantic by observations in other studies of increased bloom frequency and range that matched predicted locations. This information could potentially be used to predict the future spread of harmful algal blooms and the consequent impact on human health. —CHG

Higher sea surface temperatures are increasing algal blooms in northern oceans.
Mutualists endow certain appetites

Caroline Ash

Science 356 (6339), 713-714.
DOI: 10.1126/science.356.6339.713-e