it’s not you.
it’s your tools.

The right Western choices can take the “ugly” out of your next blot.

Western blotting tools from Merck help tailor your choices to your target:

- Ultradurable, tear-resistant TruPAGE™ precast gels
- Complete selection of PVDF and nitrocellulose membranes to help you make the right choice for transferring your protein of interest
- 30 minute immunodetection with the SNAP i.d.® 2.0 system for cleaner, more consistent data
- Ready-to-use reagents like the ultrasensitive Luminata™ substrate
- Application-specific antibody manufacturing expertise, with over 70,000 tested in Western blot

Show us your ugliest blots. We’ll provide tips and tricks for revealing beautiful Western data in our Protein Blotting Handbook, 6th edition.

[Sigma-Aldrich.com/westernblot](https://www.sigma-aldrich.com/westernblot)

P.S. If your blot has a big fingerprint in the middle...it might actually be you.
Honored to be the publisher of Nobel Prize–winning authors from Albert Einstein to Kip S. Thorne

A reading list covering the general theory of relativity, astrophysics, black holes, gravitational waves, and more
Step up your job search with Science Careers

Search ScienceCareers.org today

ScienceCareers
FROM THE JOURNAL SCIENCE

AAASTravels

Discover CUBA!
March 30 - April 7, 2018
With 2-for-1 air from Miami

Discover this fascinating island’s culture and history! Visit the museums, Planetarium, home of Hemingway “Finca La Vigia,” and the National Botanical Garden in Havana. Explore the Vinales Valley, see the majestic Sierra de Escambray Mountains and look for the bee hummingbird. Take in the cobblestone streets, historic Trinidad and the music and art in Cienfuegos!

For a detailed brochure, call (800) 252-4910
All prices are per person twin share + air

Betchart Expeditions inc.
17050 Montebello Rd, Cupertino, CA 95014
Email: AAASInfo@betchartexpeditions.com
www.betchartexpeditions.com

Challenge your thinking with the leading online journal of high-impact, peer-reviewed translational research that matters most for human health.

Part of the Science family of journals, Science Translational Medicine publishes weekly and showcases findings on interdisciplinary topics driving preclinical and clinical applications, including immunology, cancer, infectious disease, drug discovery, genomic medicine, and bioengineering.

Learn more and submit your research today.
ScienceTranslationalMedicine.org

CALL FOR PAPERS!
WILL YOUR RESEARCH LEAD TO BETTER LIVES FOR PATIENTS?

Microinjectors

The CellTram 4 Air is a pneumatic microinjector for gently holding cells or embryos in suspension. At the same time, it is suitable for the uptake and injection of cells (e.g., sperm or embryonic stem cells). Additional features of the CellTram 4 Air include the dual drive (coarse and fine), as well as the piston-position scale, which allows setting the injector’s pressure characteristics according to personal preference. The CellTram 4 Oil features an oil-filling system that minimizes oil spills and saves time. Both models have been designed with excellent ergonomics, ease of use, and high precision in mind. They also feature a scaled capillary holder 4 for reproducible mounting, and a grip head 4 for easier capillary exchange and increased user safety. For customers working with transgenic organisms, a capillary holder 4 (slim shape) allows for injecting at angles <15°. Flat-angle injections can help minimize mechanical trauma, contributing to higher survival rates for injected cells.

Eppendorf
For info: 800-645-3050
www.eppendorf.com

Microwave Vials

Asynt has new inserts for its DrySyn heating blocks, now enabling scientists to conduct precise temperature-controlled, stirred experiments in 0.5 mL-2 mL tapered, 2 mL-5 mL, and 10 mL-20 mL microwave vials. Available as an option for the DrySyn Parallel Synthesis Kit, the microwave vial inserts allow researchers to heat and stir up to 27 small-scale reactions in parallel using any standard hotplate. The Parallel Synthesis Kit facilitates clean, safe synthesis without the hazards or problems associated with silicon oil baths or heating mantles. Durably constructed from chemically resistant, anodized aluminum, DrySyn heating blocks offer excellent heating performance to over 300°C and can heat a reaction 25% faster than is possible with an oil bath.

Asynt
For info: +44-(0)-1638-781709
www.asynt.com/product/drysyn-reaction-vial-inserts

High-Vacuum Spectrometer

The McPherson Model 207V is a 670-mm focal length, optically fast f/4.7 monochromator with a vacuum-tight housing. Stigmatic performance with off-axis parabolic optics is also available for this model. With stainless-steel housing capable of 10⁻⁴ torr vacuum, the 207V works unfettered over a very wide wavelength range, from 110 nm to 15 μm. Features include our Snap-In diffraction gratings, optimized for spectral resolution and/or for wavelength-range coverage. The 50-mm-wide focal plane is ideal for work with camera systems. Precise and durable slits are provided for coupling free-space or fiber-optic signals. The vacuum removes atmospheric constituents (gas or vapor) that absorb light wavelengths of interest in both spectral regions. The 207V is useful for applications in astrophysics, material, and life sciences.

McPherson
For info: 978-256-4512
mcpsheroninc.com

Cancer Cell-Line Models

AMS Biotechnology has introduced a range of cancer cell-line models and culture media for the most difficult-to-culture tumor types for which no models may exist. Directly derived from patient tumors without any genetic manipulation, these products provide the assurance of primary cells with long-term reproducibility and scalability. Unlike traditional protocols for cell-line creation, these cancer models eliminate the possibility of large-scale cellular adaptation through culture and genetic drift. The models are stable and show a high level of correspondence to the original tumor genotype through 150 passages via single-nucleotide polymorphism analysis. They also exhibit predictable growth rates and stable proteomic expression, and are fully consented, fully documented, and subject to extensive quality control. Lot-specific growth-rate and protocol data are provided for every customer.

AMS Biotechnology
For info: +44-(0)-1235-820482

Centrifugal Sample Concentrator Range

miVac is a modular range of centrifugal vacuum concentrators and freeze-driers capable of removing water and organic solvents from a variety of sample formats including tubes, microplates, and vials. Choose from the Duo Concentrator for low sample numbers or the Quattro Sample Concentrator for larger numbers. Combine with a Duo, Quattro, or Scroll vacuum pump, depending on the solvents being concentrated, and add further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standalone small volume freeze-drier, or configured as a combined concentration/ freeze-drying workstation.

Genevac
For info: +44-(0)-1473-240000
www.spscientific.com/productcategory/108/genevac

Stem Cell Culture Medium

The AlphaSTEM Naïve hPSC Medium uses a newly discovered, naturally occurring growth factor that is expressed in the further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standalone small volume freeze-drier, or configured as a combined concentration/ freeze-drying workstation.

Genevac
For info: +44-(0)-1473-240000
www.spscientific.com/productcategory/108/genevac

Stem Cell Culture Medium

The AlphaSTEM Naïve hPSC Medium uses a newly discovered, naturally occurring growth factor that is expressed in the further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standalone small volume freeze-drier, or configured as a combined concentration/ freeze-drying workstation.

Genevac
For info: +44-(0)-1473-240000
www.spscientific.com/productcategory/108/genevac

Stem Cell Culture Medium

The AlphaSTEM Naïve hPSC Medium uses a newly discovered, naturally occurring growth factor that is expressed in the further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standalone small volume freeze-drier, or configured as a combined concentration/ freeze-drying workstation.

Genevac
For info: +44-(0)-1473-240000
www.spscientific.com/productcategory/108/genevac

Stem Cell Culture Medium

The AlphaSTEM Naïve hPSC Medium uses a newly discovered, naturally occurring growth factor that is expressed in the further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standalone small volume freeze-drier, or configured as a combined concentration/ freeze-drying workstation.

Genevac
For info: +44-(0)-1473-240000
www.spscientific.com/productcategory/108/genevac

Stem Cell Culture Medium

The AlphaSTEM Naïve hPSC Medium uses a newly discovered, naturally occurring growth factor that is expressed in the further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standalone small volume freeze-drier, or configured as a combined concentration/ freeze-drying workstation.

Genevac
For info: +44-(0)-1473-240000
www.spscientific.com/productcategory/108/genevac

Stem Cell Culture Medium

The AlphaSTEM Naïve hPSC Medium uses a newly discovered, naturally occurring growth factor that is expressed in the further options, such as the unique SpeedTrap cold trap and vacuum controller. Unique solid aluminum JetRotors and built-in special methods optimize the concentration of water and water mixtures, improving performance and reducing time. The miVac SpeedTrap may also be used for freeze-drying low volumes of water, and can be operated as a standa...
Report on the 1st International Conference on Micro/Nanomachines

Fangzhi Mou, Ming Luo and Jianguo Guan*

The 1st International Conference on Micro/Nanomachines (ICMM 2017) was held in Wuhan, China from August 25 to 28, 2017. The conference was co-organized by Prof. Jianguo Guan from Wuhan University of Technology (WUT), China, Prof. Joseph Wang from University of California San Diego (UCSD), USA and Prof. Peer Fischer from Max Planck Institute (MPI) for Intelligent Systems, Germany. It focused on the theme “Propulsion at the Micro/nanoscale”. ICMM 2017 brought together researchers from different disciplines to discuss how micro/nanomachines can be built, powered and function like their biological counterparts. The discussed topics include micro/nanomachines that are driven by local chemical reactions, external field and biological cells. There were over 50 talks and 50 posters in this conference. Apart from the questions of fabrication, energy conversion, and control at length scales where Brownian motion is of importance, a number of talks also discussed potential fields of application for these synthetic micro/nanomachines.

In the first keynote, Prof. Thomas E. Mallouk from Pennsylvania State University discussed the cross-diffusion model to explain chemotaxis in noncatalytic systems. He also demonstrated the control of motor orientation, assembly, and strong upstream or downstream rhotaxis of micro/nanomotors using chemical or acoustic propulsion. Prof. Joseph Wang from UCSD first introduced the past and present development of micro/nanomachines, then highlighted their attractive features in various applications, including using them to write, repair, image, deliver and destroy.

Prof. Peer Fischer from MPI for Intelligent Systems demonstrated that light responsive titania-silica Janus colloids can make the structures and assemblies that usually cannot be found in equilibrium systems, followed by their latest monolithic acoustic holograms, which can be used to generate diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. The new acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

Prof. Toshio Fukuda from Nagoya University delivered an informative talk on micro/nanorobotic manipulation technologies for carbon nanotube engineering, single cell surgery and 3D cell bio-assemble, as well as their-based bio-driven micro/nanomachines.

Prof. Oliver G. Schmidt from IFW Dresden discussed the opportunities and challenges of micromotors with a subsequent demonstration of the multilayer self-rolled micromotors and the magnetically guided spermatozoid-driven swimmers, showing attractive in vivo prospects of micro/nanomachines.

Prof. John F. Brady from California Institute of Technology (Caltech) discussed the origin of a new source of stress that is responsible for self-assembly and pattern formation in active matter systems.

Prof. Liangfang Zhang from UCSD highlighted a revolutionary cell membrane coating technology, which can be applied to various substrates with different types of cell membranes, endowing micro/nanomotors with a fully biocompatible surface and biomimetic functions for diverse medical applications.

Prof. Yanlei Yu from Fudan University gave an engaging presentation on photodeformable liquid crystal polymers, a promising material for the fabrication of soft actuators, which could easily achieve sophisticated 3D motions by light illumination, offering a considerable promise for optofluide microchips.

Prof. Fangzhi Mou from WUT summarized the design strategies of light-controlled micro/nanomotors, followed by the light controlled dynamic assembly of colloidal particles. Furthermore, he also highlighted the swarming behaviors and programmable collective motions of light-driven micromotors.

Prof. Qiang He from Harbin Institute of Technology (HIT) detailed that living cells with intrinsic chemotaxis capability such as neutrophils could be turned into self-guided biohybrid micromotors by integrating E. coli membrane camouflaging mesoporous silica nanoparticles (MSNPs) for actively seeking sites of diseases and targeted drug transport.

By integrating MSNPs with catalytic/bio-catalytic materials, Prof. Xing Ma from HIT (Shenzhen) introduced MSNP as micro/nano-carrier for controlled drug/gene co-delivery and photodynamic therapy for cancer treatment.

Dr. Wei Gao from UCSD (now Caltech) presented functionalization of self-propelled zinc micromotors. He reported the first in vivo study of artificial micromotors by using a mouse model, opening the door to in vivo evaluation and clinical applications of these synthetic motors.

Compared with most investigations focusing on solid micro/nanomachines, Prof. Jing Liu from Tsinghua University delivered an interesting presentation of self-powered liquid metal droplet machines. He demonstrated that injecting the EGaIn alloy fueled with aluminum to the desired electrolyte would break up the alloy into droplet motors by converting chemical energy into mechanical power.

This conference values the opportunity to identify rising young scientists. For example, Dr. Jinxing Li from UCSD was awarded by ICMM 2017 as the recipient of the “Young Scientist Innovation Award”. He presented a lecture titled “Nanorobotic Lithography and Imaging”, demonstrating an engaging application. Mr. Jemish Parmar from Prof. Samuel Sánchez group won the first place of the “Best Poster Awards”. The second and third prize winners were awarded to Mr. Haifeng Xu from IFW Dresden and Mr. Borui Xu from Fudan University, respectively.

ICMM 2017 attracted over 200 participants from 14 countries and regions and was the largest international conference ever held on micro/nanomachines. Its success indicates that micro/nanomachines are an active and topical area of research that promises to have major impact in many fields. ICMM was a perfect venue for researchers to share their latest results and build friendships, establish collaborations and spark new ideas, which are expected to be the basis of the next meeting on micro/nanomachines.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.

*Corresponding author. E-mail: guanjg@whut.edu.cn
AAAS MEMBERSHIP. MAKE THE CONNECTION.

Join AAAS Sections. They are the foundation of your AAAS membership

• Be a subject-matter expert.
• Represent your discipline.
• Network with leaders in your field.

aaas.org/sections

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
Streamline analysis, expand possibilities

E-Gel Power Snap Electrophoresis System

Simplify DNA electrophoresis with the only integrated gel running and imaging platform

The new Invitrogen™ E-Gel™ Power Snap Electrophoresis System combines the convenience of rapid, real-time nucleic acid analysis with high-resolution image capture. The integrated design helps reduce workflow time and accelerate discovery.

Find out more at thermofisher.com/powersnap