The Magnetic Field of an Atom

The substance and structure of the atom, the movements of its parts, and its properties, are, perhaps, the most fundamental subjects of modern physical investigation. And although the structure and even the substance of the atom can as yet only be inferred, nevertheless its numerous and varied phenomena not only challenge the theorist, but also, through their manifold checks, afford him at every turn the very best guidance to an approximately correct inference. Among the more important of these phenomena are the actions of atoms in respect to absorption and emission of radiation under various conditions of temperature, pressure, magnetic and electric fields. Crystal forms, chemical reactions and magnetic properties offer additional suggestions and valuable tests.

One of the most interesting inferences concerning the atom is this: that it has a very powerful magnetic field. This inference is supported by a number of investigations of entirely different character which it is proposed in what follows to outline briefly and in approximately their chronological order.

1. The electromagnetic theory of ether vibrations so satisfactorily accounted for many known phenomena and so successfully predicted others, including wireless telegraphy, that it was long ago generally believed that all radiation, including light,
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/46/1186.citation

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl