SCIENCE

CONTENTS

The Photochemistry of the Sensitivity of Animals to Light: Dr. Selig Hecht 347

The Mechanism of Injury and Recovery of the Cell: Professor W. J. V. Osterhout 356

Isao Iijima: Professor Bashford Dean 356

Scientific Events:
- Ex-secretary Meredith on Research; Scientific Legislation; Lectures before the Sioux City Academy; Cooperation of National Health Agencies; The American Meteorological Society; The Edinburgh Meeting of the British Association 357

Scientific Notes and News 360

University and Educational News 363

Discussion and Correspondence:

Quotations:
- International Scientific Organization 364

Scientific Books:
- The Terrestrial Life associated with the Coals of Northern France: Professor Charles Schuchert 367

Special Articles:
- The Relativity Shift of Spectrum Lines: Dr. Raymond T. Birge. A New High Temperature Record for Growth: Dr. D. T. MacDougall 368

The American Mathematical Society: Professor R. G. D. Richardson 372

MSS. intended for publication and books, etc., intended for review should be sent to The Editor of Science, Garrison-on-Hudson, N. Y.

THE PHOTOCHEMISTRY OF THE SENSITIVITY OF ANIMALS TO LIGHT

An analysis of sensory stimulation, in order to be objective, must take its data from the relations between the properties of the stimulating agent and those of the responses of the animal. If the analysis is to be quantitative as well as objective, not only should the response be a qualitatively invariable reflex but, together with the source of stimulation, it should be capable of precise and easy control.

There are a number of animals which possess such characteristic responses. Typical of these are the ascidian, Ciona intestinalis and the long-neck clam, *Mya arenaria*. Both of these animals, when exposed to light, respond by a vigorous retraction of the siphons. It has therefore been possible to investigate quantitatively the properties of their photic sensitivity, and as a result to propose an hypothesis which accounts for this type of irritability in terms of an underlying photochemical mechanism.

I propose now to describe briefly the evidence which has been accumulated in this connection, and to present the outstanding features of the proposed hypothetical mechanism.

The photosensory activities of these animals possess four striking and important properties. (1) When exposed to light, the animal

1 Delivered at the Symposium on General Physiology held by the American Society of Naturalists on December 30, 1920, at its Chicago meetings. The paper was illustrated with a number of charts which are not reproduced here. They may be found, together with the data on which this summary is based, in a series of articles in the *Journal of General Physiology* from 1918 to the present time.
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools: http://science.sciencemag.org/content/53/1372.citation

Permissions Obtain information about reproducing this article: http://www.sciencemag.org/about/permissions.dtl

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2016 by the American Association for the Advancement of Science; all rights reserved. The title *Science* is a registered trademark of AAAS.