My predecessor in office a year ago reminded you that the theoretical researches of Einstein and Weyl suggest that not merely the material universe but space itself is perhaps finite. As to the probabilities I do not wish to express an opinion; but the statement is significant of the extent of the revolution in the conceptions and fundamental principles of physics now in progress. That space need not be infinite has, I believe, long been recognized by geometricians, and appropriate geometries to meet its possible limitations have been devised by ingenious mathematicians. I doubt, however, whether these inventive gentlemen ever dreamed that their schemes held any objective validity such as would assist the astronomer and the physicist in understanding and classifying material phenomena. It is not certain that they will; but the possibility is definite. Apart from this, the whole development of relativity is an extraordinary triumph for pure mathematics. Had Einstein not found his entire calculus ready to hand, owing to the purely mathematical work of Christoffel, Riemann, and others, it seems certain that the development of generalized relativity would have been much slower. It is a pleasure to be able to acknowledge this indebtedness of physics and astronomy to pure mathematics.

Relativity is the revolutionary movement in physics which has caught the public eye, perhaps because it deals with familiar conceptions in a manner which for the most part is found pleasantly incomprehensible. But it is only one of a number of revolutionary changes of comparable magnitude. Among these we have to place the advent of the quan-

Address of the President of Section A—Mathematics and Physics, British Association for the Advancement of Science, Edinburgh, September, 1921.