LIGHT WAVES IN ASTRONOMY

When any object is viewed in a telescope the image formed at the focus results from the concurrence of the light waves which reach the focus from all parts of the object glass.

In the simplest case—that of a star which is so far away that it may be regarded as a point of light the image will not be a point, but a disc of appreciable size surrounded by a series of concentric circles as shown in Figure 1a.

In the case of a double star each component will present such a figure readily separable in a telescope of adequate size as in Figure 1b.

But if the stars form a very close double, the two figures overlap as in Figure 1c and in this case the system is not to be distinguished as a double.2

It can readily be shown that the limit of resolution is reached when the relation between the angular separative \(z_0 \) is given when this is equal to the ratio of the length \(\lambda \) of the light wave to the diameter \(d \) of the objective multiplied by the constant factor 1.22.

Thus in case of the 100-inch telescope at Mt. Wilson the angle would be \(1.22 \times 1/50000 \times 1 \, 000 \) or one in four million, corresponding to an angle of about one twentieth of a second of arc; which may be visualized as the appearance of a dime thirty miles away.

Next consider the appearance of an object presenting an actual disc such as a small planetoid. Each point of the disc would form an image like that in Figure 1a, the integrated effect corresponding to the appearance in Figure 1d.

Here again the appearance of \(d \) will not be distinguishable from Figure 1a if the angular diameter of the disc is less than \(z_0 = 1.22 \lambda / d \).

This then corresponds to the utmost attainable...
Science 57 (1486), 703-728.