THE ATOMIC THEORY FROM THE STANDPOINT OF MAGNETISM

When any substance is exposed to the influence of a magnetic field it behaves in various ways, depending upon the physical and chemical properties of the material examined. Oxygen is attracted to the poles of a magnet, while carbon dioxide is repelled. Bismuth shows a marked change in resistance when magnetized and copper only slightly. Varying degrees of hardness in steel are accompanied by corresponding changes in length due to a magnetic field. Each substance discloses its own peculiar temperament in a magnetic field, whether it be a gas, a liquid or a solid.

Magnetic phenomena are classified as effects according to the form of behavior which matter is observed to undergo when magnetized. If a magnetic field changes the optical properties of a substance it is called a magneto-optical effect, which is a very suggestive term. Unfortunately, corresponding terms to designate those effects which are produced when a magnetic field changes the mechanical, acoustical, electrical, magnetic and thermal properties of matter have not been adopted to any great extent, and while it may be unorthodox, nevertheless, such a division gives an excellent bird's-eye view of magnetic phenomena. Introducing these terms which would correspond to the term magneto-optical, the following outline of magnetic phenomena is herewith given.

OUTLINE OF MAGNETIC PHENOMENA

(1) Magneto-Magnetics

The magnetic field, forces in dia, para and ferromagnetism.

Magnetic induction, intensity, hysteresis, permeability, susceptibility, coercive force, retentivity, reluctance and leakage.

(2) Magneto-Mechanics

Change in moduli. Volume change on solidification.

(3) Magneto-Acoustics

Production of sound by magnetization "magnetic tick."

1 Read before the chemistry and physics section of the Mid-year Educational Conference held at the Michigan State Normal College, Ypsilanti, January 18 and 19, 1924.
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools: http://science.sciencemag.org/content/59/1536.citation

Permissions Obtain information about reproducing this article: http://www.sciencemag.org/about/permissions.dtl