THE ANALYSIS OF CRYSTAL STRUCTURE BY X-RAYS¹

In this address I propose to consider the new methods of analyzing the structure of materials by means of X-rays, considering especially the stages by which they move towards their objective. It is convenient to recognize three such stages, of which the first comprises the simplest and most direct measurements and the last the most indirect and complex.

The fundamental measurement of the method is the angle at which rays of a given wave-length are reflected by a set of planes within the crystal. The planes of a "set" are all exactly like one another: an imaginary observer within the crystal could not tell by any change in his surroundings that he had been moved from one plane to another. Sometimes there is no reflection of the first order from a set so defined, because the planes may be interleaved by other planes so spaced and of such strength as to annul the true reflection; but this can always be allowed for. When the wave-length of the X-rays is known, the angular measurement can be used to find the spacing of the set of planes, and in this way a linear dimension of the crystal is measured. The spacing is the distance between any plane and its nearest like neighbor on either side. If the spacings of three different sets of planes are found, the volume of the unit cell is found. The crystal unit cell is bounded by six faces, each set of planes furnishing a pair. The pair consists of two neighboring planes of the set. The cell may have a great variety of forms, but has always the same volume.

The specific gravity of the substance being known, it is possible to find the number of atoms of various kinds which the cell contains; the proportion of the various kinds is necessarily the same as in the molecule of the substance. The cell is in practice found always to contain a small integral number of molecules, one, two, three or four, rarely more. This assemblage of molecules is fully representative of the crystal; by the mere repetition of the cell, without the addition of any new features, the crystal with all its properties is produced.

There are, therefore, three types of assemblage. The simplest is that of the single atom, as in helium in the gaseous state, in which the behavior of every atom is on the whole the same as the behavior of any other. The next is that of the molecule, the smallest portion of a liquid or gas which has all the properties

¹ Address of the president of Section A—Mathematical and Physical Science of the British Association for the Advancement of Science, Toronto, August 11, 1924.