the heat given out when a reversible isothermal reaction is carried on with the system maintained at constant volume, so that no external work is done. $K$ is the "equilibrium constant" of the reaction, a quantity which does not change while the reaction is carried on isothermally. This equation has a firm thermodynamic foundation for reactions that can be reasonably conceived of as performed under certain conditions, first described by van't Hoff. The author has long held that these conditions can not be conceived of as holding for the process of ionization within a solid metal, and he has therefore ignored equation (1) in his speculations concerning ionization, making certain hypotheses and reaching corresponding numerical conclusions without regard to any limitation imposed by this equation. He now finds that, for every one of the many metals studied, his numerical conclusions are consistent with an equation,

$$U = f \cdot K T \frac{d \ln K}{dT} \quad (2)$$

identical with equation (1) except for the presence of a numerical factor, $f$, in the second number. The value of $f$ ranges from about 1.33 in nickel to about 3.18 in manganin, but for any one metal, though perhaps not entirely independent of temperature, it changes little if at all between $0^\circ$ C. and $100^\circ$ C.

Accommodation coefficients and heats of neutralization of gas ions at electrodes: K. T. Compton and C. C. Van Voorhis. When positive ions of gas strike an electrode and become neutralized there are energy interchanges which result in heating of the electrode. Knowledge of this heating is important both in the interpretation of the physical phenomena which are involved and also in the practical design of gas discharge devices. With the aid of a thermo couple, and using this thermo couple as an exploring electrode in the ionized atmospheres of arcs at low gas pressures, we have studied the following factors which contribute to this heating: (1) the fraction of the incident kinetic energy of the ion which is delivered to the electrode (accommodation coefficient); (2) the fraction of the energy given to the ion by an applied electric field which is retained by the ion in spite of collision with gas molecules while approaching the electrode; (3) the portion of the apparent positive ion current to the electrode which is in reality due to electrons liberated from it under the influence of ultra-violet light, metastable atoms and positive ion impact; (4) the true "heat of neutralization" of the ion at the surface. The new and most important result of this work is the discovery that a considerable fraction of the kinetic energy of an impacting ion is retained after impact by the neutralized atom. The remaining fraction, which is delivered to the electrode as heat, is analogous to the "accommodation coefficient" which is recognized in the impact of ordinary gas molecules against a heated surface. In general these accommodation coefficients appear to approach unity for ions (or molecules) of high molecular weight. Our values are about 0.45, 0.7, 0.8 for ions of He, Ne and A, respectively. The existence of an accommodation coefficient less than unity, as thus proved by energy measurements, implies also that mechanical momentum is imparted by ions to electrodes in much larger extent than has hitherto been suspected. There are several observations on electrode arcs, which have been rather obscure, which seem thus to find a ready explanation. Of the four factors mentioned above as the objectives of our work, the first three are relatively so large in their effect that we have as yet been unable to arrive at definite conclusions regarding the fourth—the true heat of neutralization of an ion—whose determination would settle some interesting speculations regarding the mechanism of electric arcs.

The deformation of ions and the various types of chemical linkage: K. Fajans (by invitation). One distinguishes usually two main types of chemical linkage, the polar or ionic and the non-polar or covalent linkage. The polar linkage is typified by the inorganic salts, such as sodium chloride; the non-polar linkage by the bond between the two atoms in the hydrogen molecule or by the linkage between the carbon atoms in the diamond and in organic compounds. According to the modern conception of atomic structure the ionic linkage in sodium chloride is produced by the transfer of one electron from the sodium atom to the chlorine atom. The electrostatic attraction between the resulting positively charged sodium ion and the negatively charged chlorine ion holds them together to form a molecule or a crystal lattice. In the non-polar linkage the two atoms are assumed to be joined together by a pair of electrons shared by both atoms, and revolving round their nuclei. Between these two main types of chemical linkage there exists a whole series of transition types. Beginning with the ideal ionic linkage these transition types can be understood as the result of the polarization (deformation) to various degrees, of the electron shell of the anion by the electric field of the cation. The degree of this deformation and consequently the deviation from the ionic linkage and the approach to the non-polar linkage is greater when the radius of the cation is smaller, its charge higher and when the deformability of the anion is greater. This approach to the non-polar linkage is also more pronounced for cations which do not show the rare-gas structure than for cations with this structure.

BOOKS RECEIVED


Smith, Benjamin F. Diabetes: Directions for Treatment by Insulin and Diet. Pp. vi + 223. Appleton. $2.00.

The New York Homeopathic Medical College and Flower Hospital

Offers opportunity for highest grade medical training to one hundred men and women selected competitively.

In addition to thorough training in the Preclinical Sciences and the usual courses in Medicine and Surgery, special emphasis is given to Homeopathy.

Seventy-first annual announcement mailed to those interested.

450 East 64th Street
New York City

JOHNS HOPKINS UNIVERSITY
SCHOOL OF MEDICINE

The School of Medicine is an Integral Part of the University and is in the Closest Affiliation with the Johns Hopkins Hospital.

ADMISSION
Candidates for admission must be graduates of approved colleges or scientific schools with two years' instruction, including laboratory work, in chemistry, and one year each in physics and biology, together with evidence of a reading knowledge of French and German. Each class is limited to a maximum of 75 students, men and women being admitted on the same terms. Applications may be sent any time during the academic year but not later than June 15th. If vacancies occur, students from other institutions desiring advanced standing may be admitted to the second or third year provided they fulfill the requirements and present exceptional qualifications.

INSTRUCTION
The academic year begins the Tuesday nearest October 1, and closes the second Tuesday in June. The course of instruction occupies four years and special emphasis is laid upon practical work in the laboratories, in the wards of the Hospital and in the dispensary.

TUITION
The charge for tuition for 1930-31 will be $800 per annum, payable in two installments. There are no extra fees except for certain expensive supplies, and laboratory breakage.

Inquiries should be addressed to the Recorder of the School of Medicine, Johns Hopkins University, Washington and Monument Sts., Baltimore, Md.

Graduates in Medicine who satisfy the requirements of the heads of the departments in which they desire to work are accepted as students for a period not less than three quarters. Tuition charge is $50 a quarter.

JUST PUBLISHED
STUFF
The Story of Materials in the Service of Man
By Pauline G. Beeby

A popular survey of chemistry—the discoveries, processes, and methods by which the stuff the world is made of has been adapted to the use of man. Written with effectiveness of style and with appreciation of the romance of chemical discovery and of the adaptation of materials of all sorts to the advancement of comfort, health, and industrial achievement. Illustrated. $5.00.

Other New Books of Popular Science
NEW FRONTIERS OF PHYSICS
By Paul E. Heyl. Illustrated. $2.00.

ANTARCTIC ADVENTURE AND RESEARCH
By Griffith Taylor. Illustrated. $2.00.

THE SEA
By H. A. Mariner. Illustrated. $3.00.

At All Booksellers, or from the Publishers,
D. APPLETON AND COMPANY, 35 West 32nd St., N. Y.
Recent McGraw-Hill Books

Edwards, Frary and Jeffries' The Aluminum Industry

By Junius D. Edwards, Assistant Director of Research, Francis C. Frary, Director of Research, and Zay Jeffries, Consulting Metallurgist, Aluminum Company of America, with the collaboration of a group of experts from the staff of Aluminum Company of America.

*Chemical Engineering Series.*

*Volume I.* Aluminum and Its Production. 558 pages, 6 x 9, 63 illustrations.

*Volume II.* Aluminum Products and Their Fabrication. 370 pages, 6 x 9, 344 illustrations.

Two volumes (not sold separately) per set. $12.00

Pauling and Goudsmit’s The Structure of Line Spectra

By Linus Pauling, Associate Professor of Theoretical Chemistry, California Institute of Technology, and Samuel Goudsmit, Associate Professor of Theoretical Physics, University of Michigan. *International Series in Physics.* 363 pages, 6 x 9, 68 illustrations. $3.50

A theoretical discussion of the structure of line spectra, based on the visualizable vector model of the atom combined with the results of the quantum mechanics.

Belling’s The Use of the Microscope

By John Belling, Cytologist, Carnegie Institution of Washington. *McGraw-Hill Publications in the Agricultural and Botanical Sciences.* 315 pages, 6 x 9, 28 illustrations. $4.00

A handbook for routine and research work on the correct use of the microscope.

Zeleny’s Elements of Electricity

By Anthony Zeleny, Professor of Physics, University of Minnesota. 438 pages, 5½ x 8, 266 illustrations. $3.00

A text for a first course in electricity sufficiently comprehensive and inclusive of enough practical information to meet the needs common to a wide variety of students. In selection of material and in manner of presentation the book has many distinctive features.

Robinson’s Elements of Fractional Distillation

New Second Edition

By Clark S. Robinson, Associate Professor, Chemical Engineering, Massachusetts Institute of Technology. *International Chemical Series.* 255 pages, 5½ x 8, 61 illustrations. $3.00

A thorough revision of a book that explains the principles of practical distillation simply and accurately, according to the best ideas of physical chemistry and chemical engineering.

*See these on approval*

McGRAW-HILL BOOK COMPANY, INC.
Penn Terminal Building
370 Seventh Avenue
New York
Outstanding College Textbooks in Science

GENERAL COLLEGE PHYSICS

By
HARRISON M. RANDALL, NEIL H. WILLIAMS, and WALTER F. COLBY
Professors of Physics, University of Michigan

THIS BOOK, published only a few months ago, has been accepted at once by leading physicists everywhere as an ideal textbook for college classes, well organized, well proportioned for a year's course, modern in point of view, and scholarly in content and treatment.

"I have always admired the sane and accurate work of the Michigan physicists and feel sure the book will meet with great success. I hope to be able to try it on my students in the near future."—JAMES BARNES, Bryn Mawr College.

"Excellent—a precise and clear statement of the necessary facts and very complete as far as it is possible without the use of higher mathematics. It will surely give the student the necessary solid basis."—KARL F. HERZFELD, Johns Hopkins University.

"The authors have made a judicious selection of materials for the first college course and have handled the topics in a clear and concise manner. We had the opportunity of trying this text in manuscript and found it furnished ample materials for the course. In its published form it should receive immediate and wide spread attention."—JOHN E. FOX, Western State Teachers College, Michigan.

List price, $3.50

MATHEMATICS
This series is published under the editorship of H. E. SLAUGHT, University of Chicago.

COLLEGE ALGEBRA, N. J. Lennes, University of Montana $2.25

PLANE TRIGONOMETRY, N. J. Lennes and A. S. Merrill, University of Montana
With Tables $2.20
Without Tables $1.60
Tables Alone $1.20

PLANE ANALYTIC GEOMETRY, Lennes and Merrill $2.50

A SURVEY COURSE IN MATHEMATICS, Lennes $2.00

ASTRONOMY
ASTRONOMY, Second Edition, John C. Duncan, Wellesley College $3.75
The revised and enlarged edition of this standard textbook will be ready in June.

PSYCHOLOGY
HUMAN NATURE: A FIRST BOOK IN PSYCHOLOGY, Max Schoen, Carnegie Institute of Technology $2.50
An important new textbook for beginning classes in psychology.

PHYSIOLOGY
THE SCIENCE OF HEALTH AND DISEASE, Howard W. Haggard, Yale University $4.00

HARPER & BROTHERS PUBLISHERS, 49 East 33 St., New York City