whenever the radiation absorbed by an electron in passing over a free path is greater than the increase in kinetic energy and energy radiated through acceleration during collision.

If the electron consists of a packet of radiation, as de Broglie and Schrödinger suppose, it is all the more likely to possess the above properties.

R. D. KLEEMAN

SCHENECTADY, NEW YORK

INTERPRETATIONS OF THE CURVE OF NORMAL GROWTH

Although there seems to be a striking similarity between the course of growth in animals and plants and the courses followed by the autocatalytic curves as described by Robertson\(^1\) and Crozier,\(^2\) it seems doubtful whether such a complicated process as growth would follow so simple a chemical reaction. A growth equation embodying a general biological rather than a chemical interpretation of the growth process may be derived in the following manner. Minot\(^3\) showed for a number of animals that the percentage increments in body weight \(\frac{W_2 - W_1}{W_1}\) tend to decrease constantly from birth to maturity. Child\(^4\) explains this decrease in the percentage increments as due to the ever-increasing mass of inactive protoplasm in the body cells accompanying growth and differentiation. As the mass of inactive protoplasm increases, the mass of active protoplasm decreases and hence the relative rate of metabolism decreases, which in turn brings about a decrease in the reproductive or growth power of the cells. These percentage increments may be looked upon as measuring the average growth power of the body cells, if growth power may be defined as the percentage rate of increase in growth. Wright\(^5\) suggested briefly that the hypothesis that growth power falls off at a constant percentage rate leading to the curve

\[
\log \log \frac{W}{W_0} = a - kt
\]

might often give a good fit to growth data. This equation may also be expressed in the forms

\[
\log W = A - be^{-kt}
\]

and

\[
L = Be^{-ce^{-kt}}
\]

Dr. Wright found that equation (1) gave a very good fit to growth in weight \(W\) of rabbits. Equation (2) was found by Davidson\(^6\) to give a good fit to growth in weight \(W\) of dairy cattle. Equation (3) was applied by Weymouth\(^7\) with excellent success to growth in length \(L\) of the razor clam.

The derivation of equation (2) is as follows: \(\frac{dW}{Pdt} = P\) where \(W\) equals body weight at any time \(t\) and \(P\) equals the growth power of the body cells. Since growth power is assumed to fall off at a constant percentage rate \(\frac{dP}{Pdt} = -k\). By integration

\[
\log P = -kt + C, \quad \text{or} \quad P = e^{C-kt} = \frac{dW}{Wdt}
\]

By integration again, \(\log W = -\frac{1}{k}e^{-kt} + A\), or \(\log W = A - be^{-kt}\). In the last equation \(A\) is the logarithm of the weight of the animal at maturity; \(100k\) is the constant percentage rate of decrease in growth power according to the above interpretation, and \(b\) locates the curve in time; \(W\) is the weight at any time \(t\). The equation of the curve for weight \(W\) is \(W = e^{A - be^{-kt}} = Be^{-be^{-kt}}\) where \(e^A = B\). This equation is similar to equation (3) for length \(L\) and is S-shaped with the point of inflection at approximately 37 per cent. of the final weight. It differs from the growth curves of Robertson and Crozier in that it embodies a general biological rather than a chemical interpretation of the growth process and at the same time requires the utilization of fewer velocity constants.

FREDERICK A. DAVIDSON

U. S. BUREAU OF FISHERIES,
STANFORD UNIVERSITY

BOOKS RECEIVED

BRIGGS, DENNIS B. A First Year Practical Chemistry. Pp. vi + 77. 14 figures. J. M. Dent & Sons, London. 5s. 10d.

MELDEUM, ANDREW N. The Eighteenth Century Revolution in Science—The First Phase. Pp. 60. Longmans, Green, Bombay. 4s. 6d.

\(^1\) T. B. Robertson, J. Gen. Physiol., 1925–1928, 463, 1926.

\(^3\) C. S. Minot, "Age, Growth and Death," G. P. Putnam’s Sons, New York, 1908.

I

I

thology, Geology, York Rico Academy Botany, West, the volumes,ained announcements SCIENTIFIC SURVEY OF PORTO RICO AND THE VIRGIN ISLANDS

The results of the natural history survey of Porto Rico and the Virgin Islands conducted by The New York Academy of Sciences, in cooperation with the Government of Porto Rico, are being published.

Thirty-one parts, distributed through eleven octavo volumes, have been issued, including documents on Geology, Physiography, Paleontology, Descriptive Botany, Plant Ecology, Mycology, Mammalogy, Ornithology, Herpetology, Ichthyology and Entomology.

Schedules, advertising these parts in detail, with announcements of the parts in preparation, may be obtained from the Recording Secretary of The New York Academy of Sciences, 77th Street and Central Park West, New York City. The price of each part is $2, the thirty-one parts published costing $62.

JAGABI RHEOSTATS—wound on porcelain tubes instead of porcelain enameled iron tubes, have high insulation and low inductance. They meet an ever increasing demand by Educational, Research and Industrial Laboratories for better and more rugged Jagabi Rheostats. Write for new Catalog 1230-8 listing 57 standardized ratings, which are carried in stock.

JAMES G. BIDDLE, 1211-13 ARCH ST., PHILADELPHIA

“POSTLIP”

(No. 633 Mill)

ENGLISH FILTER PAPERS

Manufactured in ANNUALLY INCREASING QUANTITIES for upwards of 50 years.

White and Grey Plain, Antique, Crinkled, and Embossed

All sizes in Squares, Circles, and Rolls made to order.

Pure Filterings for Laboratory Work and in quantities for all industrial purposes

See Report of TESTS made by The National Physical Laboratory, a copy of which will be sent on application, together with free samples if required.

EVANS, ADLARD & CO., Ltd.

POSTLIP MILLS,

WINCHCOMBE, CHELTENHAM, ENGLAND.

Rare and Common Gases In Cylinders

The following gases may be secured from us in high-pressure cylinders of a size convenient and practical for laboratory use.

Ammonia Ethylene Oxygen
(Anty.) Helium Phosgene
Argon Hydrogen Propane
Butane Sulphide Butyline
Butylene Isobutane Propylene
Carbon Dioxide Methane CO₂-Oxygen
Chlorine Methyl Chloride Mixtures
Compressed Air Neon Sulfur-Dioxide
Cyclopropane Nitrogen (Anhy.)
Ethane Nitrous Oxid
Ethyl Chloride (Anhy.)

If you inform us what gases you wish to use, we will be glad to quote on your requirements. Furthermore, we will send you a catalog describing our laboratory set of Unit Parts for the manipulation of high-pressure gases from cylinders.

The Ohio Chemical and Mfg. Co.

1177 Marquette St., N. E.
Cleveland

“High Pressure Gases and Gas Equipment of Every Sort”
The intimate knowledge of the needs of modern laboratories enables Kewaunee Engineers to help you select proper equipment for your laboratories. They can show how to use floor space most economically, how to avoid unnecessary expense in plumbing installation and how to equip so classrooms can be used every period.

Send us your floor plan blueprints or rough sketches and our engineers will make suggestive layout for equipment that will best meet your requirements.

Write for Kewaunee Book
If you do not have the Kewaunee Blue Book of modern laboratory furniture, write for it today on the letterhead of your institution and it will be sent, without charge, at once.

Check these SHELDON FEATURES before you buy LABORATORY FURNITURE

1. Sheldon table designs are the result of 30 years' experience in equipping 18,000 schools, colleges and universities.
2. Built by expert craftsmen who have built thousands of tables for laboratory service.
3. Construction is stronger and more durable by actual test.
5. An Engineering Department at your service to develop special furniture to meet your requirements.
6. Sheldon furniture is backed by the largest factories in the industry building laboratory furniture exclusively.

It will pay you to secure the Sheldon proposition before you buy. Write us your requirements.

E. H. SHELDON & COMPANY
Laboratory Furniture Specialists for 30 Years
Muskegon, Michigan
BIOLOGICAL and NATURAL HISTORY MATERIAL

Zoological Groups
Embryological Slides
Botanical Life Histories
Drosophila cultures
Lamprey larvae (Ammocoetes)
Prices on demand
Catalogs on request: Address
Geo. M. Gray, Curator
Supply Department
MARINE BIOLOGICAL LABORATORY
Woods Hole, Mass., U. S. A.

"Becbro" Laboratory RHEOSTATS

Becbro Laboratory Rheostats made of both iron enameled and solid wall porcelain tubes. The above illustration shows one of the numerous types of "BECBRO" tubular, slide contact, rheostats manufactured and carried in stock by us.

"BECBRO" Stone Rheostats are made in the following types: Single, Double, Universal, and Crossed Sections. These rheostats, with the porcelain tubular types, find their many uses in high frequency and radio work.

Our Catalog S.20 sent you upon request
BECK BROTHERS, Makers

The Wistar Institute Slide Tray

This tray will carry forty-eight 1-inch slides or thirty-two 1½-inch slides or twenty-four 2-inch slides. Ample space for high mounts, well protected from accident or dust. Trays nest together. Width and breadth the same, so that they may be nested in either direction. All metal—no paint or varnish to affect slides.

Price, $1.00 each
Orders may be sent to
THE WISTAR INSTITUTE