specificity of these proteins as antigens, but some experiments have been published in which the original biological specificity of the proteins also remains.2

It would seem possible, therefore, to alter chemically with the same methods such substances as display a specific biological activity without destroying this latter quality. This process appeared to us of special interest in the case of animal proteins, which play an important rôle in pathology because they carry the immune properties of the animal body, namely, the antibodies. The antibodies have a specific affinity towards their antigens (pathologic bacteria) but they usually do not destroy them or do not even lower their resistance enough to permit them to be phagocytized. We thought that in some instances a chemical alteration of the type mentioned above might increase the destructive effect of antibodies on pathogenic antigens and convert these antibodies into a quasi specific disinfectant or chemotherapeutic agent. We are attempting to obtain such an effect by introducing groups to change the physical properties of the immune-body-carrier proteins, or groups which are known to possess disinfecting or chemotherapeutic activity, or known to be apt to increase the disinfecting power of organic disinfectants.

Experimental work along this line was started in these laboratories some months ago, and without knowledge of the somewhat similar experiments and results which were recently published by Bronfenbrenner.3 In view of the accordence of our findings (with respect to the fact that chemical alteration, if carefully conducted, does not destroy immune properties) with his (presumably using different agents) a preliminary report upon some phases of our work would seem to be in order.4

In certain of our experiments para-aminophenylarsonic acid (atoxyl) was used for diazo-coupling because of its activity as a chemotherapeutic agent in certain protozoan diseases. The antibody protein was a Type I and II pneumococcus antibody, for this can be prepared in a comparatively highly purified state and its strength can be measured more easily than that of any immune serum produced against a protozoan parasite. The diazotization was carried out in the usual way. However, the pH was not allowed to change during the whole process of coupling more than from 5.0 to 7.5, approximately. A product resulted which was almost insoluble around its isoelectric point at pH 6, and soluble to a dark brown solution at neutral or alkaline reaction, soluble with a light yellow color on the acid side of the isoelectric point. This "antibody-dye" could easily be reprecipitated by dialysis and adjustment of pH. On carrying out the process in the same way a second time, identical products were apparently obtained, the A_{254}/N ratio being in one case 0.028, in the other 0.027. If the products were taken up in the same volume of physiological saline as the original, agglutination was observed up to the same dilution as with the original antibody preparation (1/320). A very marked pre-zone was found, which was not present in the original preparation. Mice infected with 100,000 lethal doses of virulent pneumococci could be protected fully, i.e., cured with 0.2 cc of the preparation containing respectively 6.6 mg N and 0.18 mg A_{254}, and 7.5 mg N and 0.2 mg A_{254} per cc, when injected intravenously, simultaneously with the infection, or 4 hours after, or 20 hours after the infection. Normal horse serum-globulin coupled with atoxyl had almost no effect. It is also interesting to note that 0.5 cc of the original antibody solution killed mice almost instantly when injected intravenously, whereas the same amount of the coupled product had no effect.

Finally, we also note that the introduction of the easily detectable arsenic into the antibody-carrier protein is helpful for quantitative study of the degree of purification of antibodies, as well as quantitative study of the antibody reaction. Further experiments are in progress.

I. REINER

THE BURBROUGHS WELLCOME AND COMPANY
EXPERIMENTAL RESEARCH LABORATORIES,
TUCKAHOE, NEW YORK,
AND THE LITTAUER RESEARCH LABORATORY,
NEW YORK UNIVERSITY

BOOKS RECEIVED

B & L Announces a New Substage Lamp

Small—compact—but powerful in illuminating qualities, this new substage lamp fills the condenser aperture completely with light sufficiently intense for working with a 2mm oil immersion objective. It illuminates an area 32 mm in diameter at a distance of 30mm from the iris diaphragm of the condenser—an illumination equal to that afforded by daylight through a single pane of glass 4½ feet square having an unobstructed view to the sky. Thus you can use a 32mm or higher power objective as a searcher without changing the position of the condenser.

This lamp attaches to the microscope in place of the mirror fork by means of a stem. Thus it is automatically centered and moves with the microscope, so that the instrument can be used in any desired position. A ground blue glass gives the white light, maintaining the true color values of the specimen. A 6 volt, 6 candle power bulb is utilized, making it economical of current.

Write for booklet D-23 for complete description.

BAUSCH & LOMB OPTICAL CO.
642 ST. PAUL STREET ROCHESTER, N. Y.
brings to your attention

AN INTRODUCTION TO CHEMISTRY

A PANDEMIC TEXT

BY JOHN ARREND TIMM

Assistant Professor of Chemistry, Yale University, with a foreword by John Johnston

Director of Research, United States Steel Corporation, Formerly Sterling Professor of Chemistry, Yale University

International Chemical Series

561 pages, 5½ x 8, 161 illustrations, $3.50

This text follows the growing trend toward a new conception of the best purposes to be served by beginning chemistry courses. For the student whose major interests lie outside of science, it gives a more general treatment of chemistry, sufficiently attentive to theory, yet carrying far greater cultural value than the text that concentrates on drill in equations and the properties of elements and their compounds.

The author outlines the purpose of the book as follows:

1. To develop an appreciation of the scientific procedure as it has been applied in the derivation and testing of the fundamental theories of the physical sciences;
2. To give a knowledge of the application of these theories to the development of natural resources, to the problems of industry, and to those of daily life of the individual;
3. To treat the development of the theory from an historical point of view in so far as is consistent with a pedagogically sound presentation of the subject matter;
4. To show the steps in bringing together in published form the results of research, and how to use this literature for the acquisition of scientific information.

The text is based upon a course introduced by Professor Timm at Yale, which during the four years of its use has shown gratifying results along these lines.

A Laboratory manual designed to accompany AN INTRODUCTION TO CHEMISTRY

LABORATORY EXERCISES IN GENERAL CHEMISTRY

By John A. Timm, Assistant Professor of Chemistry, Yale University, and Orion E. Schupp, formerly Laboratory Assistant in Chemistry, Yale University. International Chemical Series.

Emphasis is given to experiments of a quantitative nature and those involving simple problems in which the student himself is called upon to devise a procedure for solution. Because of the inclusion of so much of physics in the companion text a difficulty arose in finding suitable laboratory experiments to illustrate this material, which the authors overcame by including experiments of a quantitative character which emphasize the laws of chemical combination in the opening exercises of this manual.

138 pages, 5½ x 8, 15 illustrations, $1.25

Send for copies on approval

McGRAW-HILL BOOK COMPANY, Inc.

370 Seventh Avenue

Penn Terminal Building

New York
Equip Your Library and Branch Offices with this
New and Up-to-Date 1930 Edition

1. The BOOK universally used in the Chemical Engineering Industries.
2. Over 16,000 copies of the first (1919) edition now in use.
3. The second edition contains twice the information in half
the bulk.
4. Over 5,000 new items added to the current edition, many of
which have never before been published.
5. Data on fire hazards and methods of packing and shipping
Chemicals and Raw Materials completely revised and ex-
panded. This work has been done by Mr. C. P. Beistle, Chief
Chemist of the Bureau of Explosives.
6. The appendix has been expanded to over 63 pages, as com-
pared with 23 in the first edition.

The
Condensed Chemical
Dictionary

Compiled and Edited by the Editorial Staff of the Chemical Engineering Catalog
First Revision and Enlargement Since 1919

The Dictionary places at your disposal, in a simplified and readily accessible form,
a library of essential technical and commercial data on organic and inorganic chemicals,
the medicinals, metals and alloys, minerals, fertilizers, explosives, pigments, oils and raw
materials in general use.

Arranged in straight alphabetical classification, it gives the following facts about
12,000 chemicals (including cross references):

<table>
<thead>
<tr>
<th>Names of Chemicals and Substances</th>
<th>Specific Gravities</th>
<th>Method of Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses</td>
<td>Melting-points</td>
<td>Method of Purification</td>
</tr>
<tr>
<td>Chemical Formulas</td>
<td>Boiling-points</td>
<td>Shipping Containers and their</td>
</tr>
<tr>
<td>Colors</td>
<td>Solubility</td>
<td>Sizes.</td>
</tr>
<tr>
<td>Properties</td>
<td>Materials from which they are</td>
<td>Fire Hazards</td>
</tr>
<tr>
<td>Constants</td>
<td>made</td>
<td>Railroad Shipping</td>
</tr>
</tbody>
</table>

551 Pages—with Thumb Index

| Boards, Library Buckram | $10.00 |
| Flexible Keratol | $12.00 |

The Chemical Catalog Company, Inc.
419 FOURTH AVENUE NEW YORK, U. S. A.