growth without added manganese at pH 7.0 may be due either to the difficulty of completely removing the manganese impurity or to the greater ionization of the manganese at this reaction.

In Table II the toxicity of manganese is also shown as the amount added is increased. It should be stated that to each culture of the above experiments was added 0.1 mg of iron and 0.01 gms of sodium citrate, and therefore soluble iron which is essential for this organism\(^5\) was not a limiting factor. An important point in connection with these experiments is that the alkaline limit for the growth of this species as reported by Wann and Hopkins\(^6\) must now be extended to higher pH values since pH 8.0 is very close to the limiting reaction reported by them. Other experiments show that, when manganese is added to manganese-free cultures which have shown no development of the organism in two weeks, growth then begins. The cells with which the cultures were inoculated were not dead but were unable to develop without manganese. I have also found that manganese will not replace iron—both are essential.

In most of the literature on manganese an explanation of its action has not been attempted. The present writer wishes to suggest that manganese functions physiologically in an indirect manner by its action on the state of oxidation of iron. In other words, manganese tends to control the ratio \(\text{[Fe}^{2+}\text{]} : \text{[Fe}^{3+}\text{]}\) in the culture or in the cell. Experiments in vitro have shown that the reduction of ferrous iron to ferrous which is brought about slowly by sodium citrate tends to be prevented by the presence of manganese. For example, a solution of ferrous chloride and sodium citrate on being allowed to stand in a stoppered flask lost its original greenish-yellow color after some time. A similar solution which contained manganese did not change color. On testing them the first one showed only a slight test for ferrous iron and a strong test for ferrous iron, and the second solution showed just the reverse.

Culture experiments with yeast also indicate that the reduction of the iron by the yeast organism tends

TABLE II

<table>
<thead>
<tr>
<th>Concentration of manganese</th>
<th>0</th>
<th>1 to 5,000,000</th>
<th>1 to 1,000,000</th>
<th>1 to 500,000</th>
<th>1 to 100,000</th>
<th>1 to 50,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry weight mgs. av.</td>
<td>1.4(4)*</td>
<td>52.9(4)</td>
<td>53.7(4)</td>
<td>48.1(4)</td>
<td>36.2(3)</td>
<td>11.9(3)</td>
</tr>
</tbody>
</table>

* The figures in parenthesis refer to the number of cultures included in the average.

further, oxidation-reduction potential measurements on culture solutions containing ferrous iron and sodium citrate show that when manganese is added a higher potential is developed.

On this basis it is believed that not only the necessity of manganese but its toxicity can be explained. In the first case, sufficient manganese must be present to insure the reoxidation of the iron after its reduction by the organism. In the second case, a large amount of the element either results in too high a concentration of ferrous ions or prevents its reduction by the organism. Different species may be expected to vary in their relation to manganese depending on the reducing power of their cells.

E. F. HOPKINS

LABORATORY OF PLANT PHYSIOLOGY,
CORNELL UNIVERSITY

BOOKS RECEIVED

Crittenden, Russell H. The Development of Physiological Chemistry in the United States. Pp. 427. Chemical Catalog Company. $6.00.

Koppanyi, Theodore. The Conquest of Life. Pp. xii + 263. Appleton. $2.00.

Noll, Victor H. Laboratory Instruction in the Field of Inorganic Chemistry. Pp. xii + 164. University of Minnesota Press. $2.00.

Russell, E. S. The Interpretation of Development and Heredity. Pp. 312. Oxford University Press. $5.00.

Available for Research—

Pure Proteins and Vitamine Products

MILK PROTEINS

The preparation of materials, of highest purity, for research studies, is so costly and involves such a loss of intellectual skill, this service is best rendered by American industrial laboratories, who specialize in such work.

Through years of experience in the laboratories of Osborne & Mendel (Conn. Expt. Station), we now produce the two chief proteins of milk, in state of very high purity.

Casein and Lactalbumin are prepared from fresh milk, which is the only way to obtain either one of these proteins, as pure substances.

"Casein-Harris" shows the following average analysis:

<table>
<thead>
<tr>
<th>Moisture</th>
<th>10.73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein (N x 6.38)</td>
<td>87.09</td>
</tr>
<tr>
<td>Ether-soluble</td>
<td>.20</td>
</tr>
<tr>
<td>(Calcium, trace.)</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>13.66</td>
</tr>
<tr>
<td>Nitrogen; water, fat, ash-free</td>
<td>15.44</td>
</tr>
</tbody>
</table>

(cf.—Osborne & Harris, Jr. Am. Chem. Soc., 25-IV, 346)

"Lactalbumin-Harris" shows highest nitrogen content, very low ash and the average analysis of the purest specimens of this protein.

Both of these proteins are free from all vitamins.

YEAST AND ITS VITAMINES

We claim to prepare the purest specimens of washed and dried yeast cells, available anywhere, for researches of precision.

Brewers’ Yeast-Harris (pasteurized powder), is prepared from a pure culture of fermentative yeast. The yeast cells are thoroughly washed with pure water to remove extraneous, soluble matter from its culture medium. The cells are quickly dried at temperature, just high enough to pasteurize the cells and to stop fermentation properties.

It is offered for chemical, nutrition and clinical purposes, where a pure yeast, with a known content of vitamine-B (F. & G) is desired.

CONCENTRATES OF VITAMINE-B (F & G)

Concentrated preparations from this yeast, containing Vitamine-B complex (F & G), are also available for investigations. They contain more vitamine in proportion to total nitrogen content, than the whole yeast, and often serve such purposes in feeding experiments.

We also offer vitamins F. & G—“adsorbed” on Fuller’s earth—free from many extraneous substances of the whole yeast, as a “starting material” for further researches on vitamine-B complex.

“Autoclaved Yeast” is also offered, containing the anti-pellagric G vitamine (heat-stable) and free from anti-neuritic Vitamine-F, which is heat-labile. This product is standardized by the white rat method and growth charts are available with it.

THE HARRIS LABORATORIES

Tuckahoe :: NEW YORK
FERTILIZER CHEMISTS use
WHATMAN Filter Papers

Analyses of Fertilizers must be right. Neither the Factory Chemist, the State Chemist, nor the Referee can afford to take any chances on the accuracy of their work. That is one reason why WHATMAN Filter Papers are so popular in Fertilizer Laboratories—they are so uniformly reliable. There is a grade for every purpose, from the first filtration to the final weighing, each grade with certain well defined characteristics that fit it for a particular type of work. Your dealer can supply WHATMAN Filter Papers promptly. Standardize on them and put Filter Paper worries behind.

Samples cheerfully furnished.

H. REEVE ANGEL & CO.
Incorporated
7-11 Spruce St. New York, N. Y.

Use a Hoke Ammonia Valvogage

when handling anhydrous ammonia. Use it in research on ammonia compounds; in nitriding, etc.

Easily adjusted to give a few bubbles a minute or a full stream.

One of the Hoke devices for the control of compressed gases. Ask for Folder 64.

Your dealer or
Hoke Inc. 22 Albany St., New York City

The Wistar Institute Slide Tray

Section through two trays, showing nesting features

This tray will carry forty-eight 1-inch slides or thirty-two 1½-inch slides or twenty-four 2-inch slides. Ample space for high mounts, well protected from accident or dust. Trays nest together. Width and breadth the same, so that they may be nested in either direction. All metal—no paint or varnish to affect slides.

Price, $1.00 each

Orders may be sent to
THE WISTAR INSTITUTE
McGraw-Hill brings to your attention

AN INTRODUCTION TO CHEMISTRY

By J. A. TIMM
Assistant Professor of Chemistry, Yale University
with a Foreword by JOHN JOHNSTON
Director of Research, United States Steel Corporation
Formerly Sterling Professor of Chemistry, Yale University

International Chemical Series
561 pages, 5½ x 8, 161 illustrations, $3.50

This text follows the growing trend toward a new conception of the best purposes to be served by beginning chemistry courses. For the student whose major interests lie outside of science, it gives a more general treatment of chemistry, sufficiently attentive to theory, yet carrying far greater cultural value than the text that concentrates on drill in equations and the properties of elements and their compounds.

The author outlines the purpose of the book as follows:

1. To develop an appreciation of the scientific procedure as it has been applied in the derivation and testing of the fundamental theories of the physical sciences;
2. To give a knowledge of the application of these theories to the development of natural resources, to the problems of industry, and to those of daily life of the individual;
3. To treat the development of the theory from an historical point of view in so far as is consistent with a pedagogically sound presentation of the subject matter;
4. To show the steps in bringing together in published form the results of research, and how to use this literature for the acquisition of scientific information;

The text is based upon a course introduced by Professor Timm at Yale, which during the four years of its use has shown gratifying results along these lines.

See these on approval

McGRAW-HILL BOOK COMPANY, Inc.
Penn Terminal Building
370 Seventh Avenue

New York