mere isolation of this organism from the suspected feed or intestinal tract or spleen of a dead animal is insufficient to support the diagnosis of botulism." There is always the likelihood that tissues may be invaded after death by this saprophytic anaerobe which, in the form of a few adventitious spores, may have been making harmless passage through the alimentary tract at the time of the creature's death, brought about by factors that may have been wholly foreign to botulism.

Demonstration of toxin in the field, therefore, in concentrations lethal to birds and in, or closely associated with, likely food items, constituted the primary objective of the past season's study of duck sickness conducted by the Biological Survey in southern Oregon and northern California. It was the logical sequel to the progress made in 1929 and 1930, and it constituted the final unforged link in the complete chain of evidence. Without such toxin demonstration the concept of botulism being the cause of duck sickness still would remain, at least to the bacteriological world, an unproved theory.

It is gratifying to be able to announce that this primary objective was attained, not once, but in at least twenty different instances during the summer of 1931. In each case toxin was demonstrated by the feeding or inoculation of experimental birds (mainly pigeons) with material obtained directly from field sources. Necessary toxin-antitoxin tests were made on every occasion, definitely identifying the toxin as that originating from C. botulinum, Type C, of Bengtson.

The media in which toxin was demonstrated included the bodies of birds dying of duck sickness, mud in the immediate vicinity of such bodies, water from shallow pools in infested areas, living and dead larvae of sarcophagid flies, submerged barley and other grains that had lain on mud flats where they were subjected to high temperatures and an alkaline environment. Under conditions that were strictly experimental but which might easily occur in the field, toxin also was demonstrated in a mixed mass of insect remains, copepods, snails, algae and Lemma. The organism, but not its toxin, was also demonstrated in such apparently suitable toxin-producing media as the dead larvae and pupae of hydrophilid beetles, submerged wheat heads of the season's crop, colonies of dead copepods, and miscellaneous insect debris, drifted ashore by wave and wind action.

This array of demonstrated toxin-producing media, though admittedly only a beginning, already includes food items that would indicate the channels through which ducks and shore birds may contract the trouble. Added research we feel is destined to extend the categories of toxin-producing food items of these two groups of highly susceptible birds and, bit by bit, round out our knowledge of the sources and vehicles for the toxin now known to affect more than sixty species of wild birds.

During 1931, progress also was made in the study of other aspects of this problem. Mentioning only a few, attention may be called to the apparent and doubtless important correlation between the incidence of duck sickness and alkalinity; the presence of Type C to the almost if not total exclusion of other types of botulism in duck sickness environments; the degree of susceptibility of lower organisms, both vertebrate and invertebrate, the death of which in the course of an outbreak of the disease would greatly augment the quantity of toxin-producing media; the toxin-destroying properties of high concentrations of certain alkaline salts and the possibility of thus explaining the absence of duck sickness from certain areas otherwise suited to its occurrence. These and numerous other aspects of the problem, mainly bacteriological in character, bid fair to make future studies of duck sickness of as great importance to the bacteriologist as to the conservationist of wild life.

During the season of 1931 Mr. M. F. Gunderson, employed by the Disease Investigation Project of the Biological Survey, worked with the writer, and to him is due great credit for the progress made along bacteriological and toxicological lines. At present he is continuing these studies in the department of bacteriology and immunology, University of Minnesota. It is a fruitful field for pure research as well as for the attainment of results of great practical value in the preservation of wild birds, and it stands to reason that, before the story of western duck sickness is completed, earlier concepts of the disease as well as the prevalence, range and economic importance of Clostridium botulinum, Type C, will be greatly changed.

E. R. KALMBACH

BIOLOGICAL SURVEY, U.S. DEPARTMENT OF AGRICULTURE

BOOKS RECEIVED

OPEN FOR ENGAGEMENT: Executive with wide experience as head of chemical and metallurgical laboratory in large manufacturing plant. Ph.D. and honorary degrees from eastern universities. Experience in college administration and scientific editorial work. Address Box XY, Care of Science, 3941 Grand Central Terminal, New York, N. Y.

WANTED—Used Leitz Petrographic microscope in good condition. Address N. L. C., care of Science, 3941 Grand Central Terminal, New York, N. Y.

NEW (15th) EDITION OF
THE MICROSCOPE
By SIMON HENRY GAGE
Revised throughout, and a wholly new chapter on the Ultra-Violet Microscope. Price $4.00.

THE COMSTOCK PUBLISHING CO., Ithaca, N. Y.

PRECISION BINOCULARS
Made with the accuracy of fine scientific instruments. Ample range of magnifications, bright clear field; compactness; freedom from color aberration. For information write
BAUSCH & LOMB OPTICAL CO.
632 St. Paul St., Rochester, N. Y.

Field Equipment for Engineers, Explorers, Hunters, Travelers
Scientific Instruments, Packing Equipment, sketches, Firearm, Clothing, Field Bag, Sleeping Bags, Optical Instruments, Astronomic Telescopes, Range Finders, Binoculars.
Paulin Altimeters. Write for catalog "A"
FIALA OUTFITS
47 Warren St., New York

Hy-Speed MIXERS
Clamp to any tank, operate from light circuit, mix all liquids, maintain even temperature baths. Thousands used in sizes for 1 to 50,000 gallon tanks. Write for Catalogue
ALSOPE ENGINEERING CO.
39 West 60th St., New York

THE SCIENCE PRESS
PRINTING COMPANY
PRINTERS OF
SCIENTIFIC AND EDUCATIONAL
JOURNALS, MONOGRAPHS AND BOOKS
Correspondence Invited
LANCASTER, PENNSYLVANIA

"Leitz"

Microscopes for all purposes.
Micro Projectors.
Microscopical Lamps.
Metallurgical Equipment.
Grinding – Polishing and Rock Cutting Machines for thin sections.
Projection Apparatus for Opaque Objects and Lantern Slides.
Leica Camera and Film Slide Projectors.

Expert repairing of Microscopes
SPINDLER & SAUPPE, INC.
Western Representatives
SAN FRANCISCO LOS ANGELES
86 Third St. 811 West Seventh St.

BIOLOGICAL and NATURAL
HISTORY MATERIAL
Zoological Groups
Embryological Slides
Botanical Life Histories
Drosophila Cultures

Catalogs on request: Address
MARINE BIOLOGICAL LABORATORY
Supply Department
Woods Hole, Mass., U. S. A.

A Hoke-Jewel Torch
Is a laboratory necessity for working Pyrex and quartz glass: soldering; brazing, melting platinum; heating small areas intensely and quickly; lead burning, etc.

Useful for a dozen different jobs.
Burns city gas, with oxygen. Models also for natural gas, hydrogen, or acetylene, with oxygen.

Your dealer or
Hoke Inc. 22 Albany St., New York City

Ask for folder J-2