Research Trend of Medical Bacteriology: Dr. W. H. MANWARING .. 41

Obituary:
George Kimball Burgess: LYMAN J. BRIGGS. Memorials; Recent Deaths .. 46

Scientific Events:
The British National Physical Laboratory; Laboratory for Tropical Research; Mortality Statistics in the United States; Ithaca Meeting of the American Psychological Association; The John Scott Awards ... 48

Scientific Notes and News ... 50

Discussion:

Scientific Books:
Shaw’s Manual of Meteorology: Dr. W. J. HUMPHREYS. Blatchley’s My Nature Nook: Dr. BARON WARNER EVERMANN .. 56

Scientific Apparatus and Laboratory Methods:
An Apparatus for Counting Sand Grains: J. E. APPEL. A Unit for Kymograph Recording: C. V. HUDGINS and PROFESSOR R. H. STETSON .. 58

Special Articles:
Correlation of the Fish Lake Valley and Cedar Mountain Beds in the Esmeralda Formation of Nevada: R. A. STIERSTON. Seed Transmission of Cotton Wilt: DR. J. J. TAUBENHAUS and DR. W. N. ELEKIEK .. 60

Science News .. 6

RESEARCH TREND OF MEDICAL BACTERIOLOGY

BY DR. W. H. MANWARING

PROFESSOR OF BACTERIOLOGY AND EXPERIMENTAL PATHOLOGY, STANFORD UNIVERSITY, CALIFORNIA

During the last three years, conservative bacteriology has shown increasing discontent with nineteenth century theories of microbe infection and bodily resistance, a receptive attitude toward newly suggested hypotheses and alternative interpretations.

The suggested theories would offer plausible explanations for clinical non-success in the past and renewed hope of ultimate clinical victory.

I

Fifty years ago, clinicians were introduced to a new biological world. Mid-Victorian microscopists intuitively pictured the newly discovered disease germs as miniature animals or midget plants. Thus pictured, it was perhaps inevitable that they should have read into these minute pathogenie specks many of the laws and generalizations of higher biological science.

Centuries of dwindling superstition had taught modern man that, from generation to generation, each higher plant and animal species is almost static in anatomical structure and physiological peculiarities. Minor variations, of course, were known to occur. Since the Middle Ages, however, rats had never been known to transmute into lizards, to fractionate into locusts, nor to evaporate into corrosive miasmas. It seemed logical to assume that this stability is in obedience to a general law of nature, equally applicable to microbe life. Obeying this static law a tuberele bacillus could never arise except from a pre-existent bacillus of approximately the same morphology and chemical composition. A diphtheria bacillus could never transmute into a gonococcus, nor fractionate into ultramicroscopic poliomyelitis colloids.

This static purpose of nature became a major premise for subsequent epidemiologic, diagnostic and therapeutic deductions. Tuberculosis, gonorrhoea and poliomyelitis were wholly unrelated infectious diseases, because of the postulated microbe invariability...