The Spontaneous Heating and Ignition of Hay and Other Agricultural Products: Dr. C. A. Browne 223

Bread Quality of Wheat Produced in Aqueous Culture Media: Dr. W. F. Gercke 229

Obituary:
Recent Deaths 232

Scientific Events:
The School of Medicine of Rosario; Australian Fossils for the Harvard Museum; Administration of the Boulder Dam Project Area; New Pharmacopoeial Vitamin Advisory Board; The Washington Meeting of the American Chemical Society 232

Scientific Notes and News 235

Discussion:

Scientific Apparatus and Laboratory Methods:
A Home-made Electrically-driven Psychrometer: J. F. Townsend. The Current Rotor: Dr. Paul S. Galitsoff and Louella E. Cable 242

Science News 8

SCIENCE: A Weekly Journal devoted to the Advancement of Science, edited by J. McKeen Cattell and published every Friday by

THE SCIENCE PRESS
New York City: Grand Central Terminal Lancaster, Pa. Garrison, N. Y.

Annual Subscription, $6.00 Single Copies, 15 Cts.

SCIENCE is the official organ of the American Association for the Advancement of Science. Information regarding membership in the Association may be secured from the office of the permanent secretary, in the Smithsonian Institution Building, Washington, D. C.

THE SPONTANEOUS HEATING AND IGNITION OF HAY AND OTHER AGRICULTURAL PRODUCTS

By Dr. C. A. Browne

U. S. Bureau of Chemistry and Soils

The production of heat, as a manifestation of vital activities, was associated at first almost entirely with the processes of animal life. This is not surprising when we consider the effect of the transpiration of large quantities of water from the immense leaf surfaces of growing plants which tends to keep their temperatures below that of the surrounding air.

The original observation of Lamarck² in 1777 that the fleshy spike or spadix of the flowers of Arum maculatum at a certain stage of growth was perceptibly warm to the touch first called the attention of scientific men to the heat-producing power of growing plants. Senebier³ in 1800 confirmed this observation of Lamarck and at the same time noted the additional fact that this production of heat was especially pronounced in the presence of oxygen. The connection of this observation with the familiar oxygen respiration of animals was indicated later by the experiments of Sausser² in 1822, since which time the validity of a true respiration process by plants, in which oxygen is consumed and carbon dioxide evolved, has been universally recognized.

The intensity of this heat production by plants and its relation to oxygen consumption were examined by other investigators in succeeding years. In experiments by Kraus⁵ in 1882 upon the spadix of flowers of Arum italicum a maximum temperature of 44.7° C.