to that in land soils, while others were convinced that nitrates are not formed in the sea itself but are brought into the sea from the atmosphere or by land drainage; still others denied altogether the bacterial nature of the process and suggested its origin by electric discharges or by photochemical processes.

The work of Brandt, Thomsen, Issatchenko and Lipman led, however, to a definite conclusion that, while nitrifying bacteria may be absent in sea water, they are present abundantly in the sea bottom. Issatchenko demonstrated the presence of these organisms in the North Arctic Ocean and in the Sea of Azov; he found them also in the Black Sea, but only in the bottom material close to shore. Similar results were obtained at the Woods Hole Oceanographic Institution, for samples taken from the Gulf of Maine and from George's Bank; the method used for demonstrating the presence of these organisms was found to be of primary importance.

One of the major criticisms directed against the findings of the nitrifying bacteria in the sea only along the littoral zone was that they are not normal sea inhabitants, but that they are rather a result of introduction from land soils by means of drainage waters. In order to meet this criticism, samples of sea-bottom material were obtained on the oceanographic vessel, Atlantis, from deep seas, north of Bermuda. The greatest depth of the water was 4,742 meters. The methods used for obtaining the samples of sea bottom under sterile conditions as well as for determining the presence of the specific organisms are described in detail elsewhere. Active formation of nitrite, in an ammonium sulfate medium, was obtained at room temperature in 7 days, in the case of some samples, and in 27 days in all samples, as shown in Table I. It may be of interest to add that when cultures from stations 1730 and 1736 were incubated at 8°C, active nitrite formation from ammonium salt was obtained in 46 days.

Although the presence of nitrite-forming bacteria was demonstrated in practically all the samples of marine-bottom material, no matter at what depth and at what distance from shore, the formation of nitrate could not be demonstrated in the cultures. This is due to the fact that the method of testing for nitrate is much less sensitive than that for nitrite, and also because the nitrate-forming organisms develop much later. In the case of the cultures of nitrifying bacteria obtained in 1932 from the bottom deposits taken off Gay Head, it took from 42 days to nearly three months' incubation of the cultures before the nitrate-forming bacteria could be demonstrated. However, once they began to develop in the medium, further transfers resulted in active production of nitrate within a week or two.

These results prove beyond any doubt that the process of nitrification in the sea is brought about by bacteria which are native inhabitants of the sea bottom and are not merely contaminations from land.

Cornelia L. Carey

Barnard College, Columbia University

Selma A. Waksman

New Jersey Agricultural Experiment Station

BOOKS RECEIVED

Seventy-second Annual Report of the Secretary of the State Board of Agriculture of the State of Michigan and Forty-sixth Annual Report of the Experiment Station, 1932–33. Pp. 288. Illustrated. Secretary of the State Board of Agriculture.

Histological Staining with PINACYANOLE

The photographic sensitizer, pinacyanole, has recently been found to have interesting properties as a stain for fixed or frozen tissue sections. It acts as both a nuclear and a protoplasmic stain. The chromatin ranges in color from dark blue to cobalt violet and is very distinctly differentiated; the protoplasm is stained in various shades of purple. Pinacyanole also differentiates connective tissue from elastic and muscle tissue. This interesting stain is described by Frederick Proescher in Proc. Soc. Exp. Bio. & Med., 31, 79-81 (1933).

Eastman Pinacyanole is made to meet rigid photographic standards, and its high purity makes it most satisfactory for staining purposes. Details of its use will be submitted upon request. Eastman Kodak Company, Chemical Sales Division, Rochester, New York.

EASTMAN ORGANIC CHEMICALS

Just Published

MANUAL OF THE SOUTHEASTERN FLORA (ILLUSTRATED)

Being Descriptions of the Seed-Plants growing naturally in North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Tennessee and Eastern Louisiana

By JOHN KUNKEL SMALL

This Manual replaces the author's Flora of the Southeastern United States, published in 1903 (second edition 1913), for the Southern States east of the Mississippi River. It embodies the results of continued exploration and study, thus bringing up to date our knowledge of this floral region.

The Manual is the only complete illustrated work on the flora of the Southeast by a recognized authority.

In addition to analytical keys to the various plant groups, and descriptions of the orders, families, genera, and species, regional or altitudinal and geographic distribution, there are xxii + 1554 pages and over 1500 illustrations, one illustration of a species of each genus.

Price $10.50 Postpaid

THE SCIENCE PRESS PRINTING CO.
LANCASTER, PENNSYLVANIA
A New Catalog on
“JAGABI” RHEOSTATS

In addition to describing the latest design and numerous types of Jagabi Rheostats, this Catalog includes valuable data—not published heretofore—on how to select in terms of (1) fineness of adjustment, and (2) rise in temperature.

It shows briefly and concisely how to determine which size and rating will best meet a given need; and the probable temperature rise for a given load or number of watts being dissipated.

Write for new Jagabi Rheostat Catalog No. 1370-S; no obligation.

JAMES G. BIDDLE CO.
ELECTRICAL AND SCIENTIFIC INSTRUMENTS
1211-12 Arch Street, Philadelphia, Pa.

The ALOE - VARNEY INOCULATOR

- For the Spiral Streak Method of Plate Inoculation

A new electrical instrument for the Spiral Streak Method of inoculating petri dish cultures as suggested by Philip L. Varney, Washington University Medical School. (See Journal of Infectious Diseases, Vol. 41, No. 3, September, 1927, pp. 190–196).

Isolation Made Easier

The rotating table, operated by a foot switch, allows deposit of bacteria in a spiral streak. The number of bacteria decreases toward the center of the plate, the best part for microscopic examination. This enables easy isolation of bacteria, including anaerobes and other organisms usually hard to isolate.

PRICE—Aloe-Varney Inoculator, complete, including special nichrome inoculating spud .. $35.00

A. S. ALOE CO.
1819 OLIVE ST.
ST. LOUIS, MO.

Full Line of Stains, Prepared Solutions, Fine Dissecting Instruments, Etc.
ZEISS

Physicians' and Laboratory Microscope

ESC-106

Magnifications 56-900x

Fixed stage, 12 cm. square
Illuminating apparatus with rack and pinion
Condenser 1.2 with iris
Triple revolving nosepiece
Fine adjustment with graduated drum

Achromatic objectives:

- 8 n.a. 0.20
- 40 n.a. 0.65
- 90 n.a. 1.25 oil imm.

Huygens oculars 7x and 10x

Price $152.00 f. o. b. N. Y.

A good dark-field outfit is obtained by adding: Cardioid condenser $26.00 extra for oil imm., with iris $4. Compensating ocular 15x: $11.00.

A satchel type of carrying case can be supplied instead of the standard cabinet, at an additional cost of $4.00.

CARL ZEISS, INC.

485 Fifth Avenue 728 So. Hill Street

NEW YORK LOS ANGELES