ADRESS OF THE PRESIDENT BEFORE THE BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, BRISTOL, 1898.

II.

Having kept you for the last half hour rigorously chained to earth, disclosing dreary possibilities, it will be a relief to soar to the heights of pure science and to discuss a point or two touching its latest achievements and aspirations. The low temperature researches which bring such renown to Professor Dewar and to his laboratory in the Royal Institution have been crowned during the present year by the conquest of one of Nature's most defiant strongholds. On the 10th of last May Professor Dewar wrote to me these simple but victorious words: "This evening I have succeeded in liquefying both hydrogen and helium. The second stage of low-temperature work has begun." Static hydrogen boils at a temperature of 238°C at ordinary pressure, and at 250°C in a vacuum, thus enabling us to get within 23°C of absolute zero. The density of liquid hydrogen is only one-fourteenth that of water, yet in spite of such a low density it collects well, drops easily and has a well-defined meniscus. With proper isolation it will be as easy to manipulate liquid hydrogen as liquid air.

The investigation of the properties of bodies brought near the absolute zero of temperature is certain to give results of extraordinary importance. Already platinum